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Stochastic Volterra Equations

with Singular Kernels

L. Coutin and L. Decreusefond

1 Introduction

Motivated by the potential applications to the fractional Brownian motion
(cf. [3]), we study Volterra stochastic differential of the form :

Xt = x+

∫ t

0

K(t, s)b(s,Xs)ds+

∫ t

0

K(t, s)σ(s,Xs) dBs, (E)

where (Bs, s ∈ [0, 1]) is a one-dimensional standard Brownian motion and
(K(t, s), t, s ∈ [0, 1]) is a deterministic kernel whose properties will be pre-
cised below but for which we don’t assume any boundedness property.

Actually, when σ is a constant and K is given by (2.2), we obtain :

Xt = x+

∫ t

0

K(t, s)b(s,Xs)ds+ σWH
t ,

where WH is the fractional Brownian motion of Hurst parameter H – see the
example below. In this particular case, the main feature is that K is highly
singular as a kernel but the integral map canonically associated to it, i.e.,

Kf(t) =

∫ t

0

K(t, s)f(s) ds,

is a regularizing operator. That explains why we work as much as possible
with the properties of the map K and not with those of the kernel K(t, s).
The problem is then in the treatment of the stochastic integral. Actually,
one of the main difficulties is to control the (Hölder) regularity, with respect
to t, of the stochastic integral in the right-hand-side of (E). This has been
the object of a previous paper [2], the hypothesis of which we simplify here.
With the result obtained in that paper, the proof of existence and uniqueness
of the solution of (E) is achieved as usual by a fixed point technique.



However, some other problems arise when we study the Gross-Sobolev
regularity of the solution of (E) and the expression of its derivative. They
are of two sorts : on one hand the singularity of the kernel and on the other
hand the fact that the Gross-Sobolev derivative of the solution is the solution
of a linear but time dependent stochastic differential equation. We eventually
give a somewhat explicit expression for the Gross-Sobolev derivative of the
solution – in this part, the approach owes much to the ideas developed in [5].

Note that the specific form of the drift ensures both a symmetric role to b
and σ and the existence of weak solutions to (E) – cf. [1] for the application of
this notion to the non-linear filtering theory with fractional Gaussian noise.
For other stochastic differential equations related to the fractional Brownian
motion, we refer to [7, 8, 16].

The equations we have to deal with are of Volterra type but our work
does not seem to be subsumed by previous articles on this subject (see for
instance [6, 11, 12]) because our kernel is weakly regular and we are looking
for classical solutions and not distribution-valued ones. Our work is only done
in one dimension but it is straightforward to extend it to higher dimensions.

This paper is organized as follows: in the next section, we show how
hypothesis (A) is sufficient to entail those of the main theorem of [2]. As an
example, we address the case of the fractional Brownian motion. In Section
3, we prove the main theorem of existence and uniqueness of the solution
of (E). In Section 4, we prove that under an extra boundedness assumption
on σ, this solution is Gross-Sobolev differentiable and we give an integral
representation of it.

2 Preliminaries

Consider a measurable kernel (K(t, s), s, t ∈ [0, 1]) and denote also by K the
(formal) linear map :

Kf(t) =

∫ t

0

K(t, s)f(s) ds.

Hypothesis (A)– We assume once for all that there exist γ > 0 such that
K is a continuous both from L1([0, t]) into Iγ,2([0, t]) and from L2([0, t]) into
Iγ+1/2,2([0, t]) for any t ∈ [0, 1].
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Theorem 2.1 Let u be an adapted process belonging to Lr(Ω× [0, 1],P⊗dt).
If r ≥ 2, the family of random variables (Mt(u) =

∫ t

0
K(t, s)us dBs, t ∈

[0, 1]) has a version whose trajectories belong almost surely to Iγ−ǫ,r for any
ǫ ∈ (0, γ). Consequently, if γ > 1/r, the sample-paths are almost surely
(γ−1/r −ǫ)-Hölder continuous for any ǫ ∈ (0, γ). Moreover, the following
maximal inequality holds :

‖M(u)‖Lr(Ω;Iγ−ǫ,r([0,t])) ≤ c‖u‖Lr(Ω×[0,t]). (2.1)

Proof. It is sufficient to prove that hypothesis I to III of [2] are satisfied. Let
δ = γ − ǫ, we have to show that

1. K is continuous from L2 into B, the space of bounded functions on
[0, 1].

2. K and Kδ = I−δ
0+ ◦K are Hilbert-Schmidt from L2 into itself,

Since γ > 0, it is well known (see section A of the appendix) that Iγ+1/2,1/2 ⊂
Hγ ⊂ B and the first point follows.

Since γ > 0, the embedding of Iγ+1/2,2 in L2 is Hilbert-Schmidt (see [14])
and so is K from L2 into itself. Moreover, Kδ is continuous from L2 into
I1/2+ǫ,2 and the embedding of I1/2+ǫ,2 in L2 is Hilbert-Schmidt, hence Kδ is
Hilbert-Schmidt from L2 into itself.

As an example (in fact the motivating one), consider K = KH the kernel
which is related to the fractional Brownian motion. For any H in (0, 1), the
fractional Brownian motion of index (Hurst parameter) H , {WH

t ; t ∈ [0, 1]}
is the unique centered Gaussian process whose covariance kernel is given by

RH(s, t) = E[WH
s W

H
t ] =

VH
2

(

s2H + t2H − |t− s|2H
)

where

VH =
Γ(2− 2H) cos(πH)

πH(1− 2H)
.

It has been proved (see [3]) that there exists a standard Brownian motion
such that almost surely :

WH
t =

∫ t

0

KH(t, s) dBs
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where

KH(t, r) =
(t− r)H− 1

2

Γ(H + 1
2
)
F (

1

2
−H,H −

1

2
, H +

1

2
, 1−

t

r
)1[0,t)(r). (2.2)

The Gauss hyper-geometric function F (α, β, γ, z) (see [10]) is the analytic
continuation on C × C × C\{−1,−2, . . .} × {z ∈ C, Arg|1− z| < π} of the
power series

+∞
∑

k=0

(α)k(β)k
(γ)kk!

zk.

Here (α)k denotes the Pochhammer symbol defined by

(a)0 = 1 and (a)k =
Γ(a+ k)

Γ(a)
= a(a + 1) . . . (a+ k − 1).

It is well known from [13] that KH maps continuously Lp into IH+1/2,p for
any p ≥ 1, so that, in this case, hypothesis (A) is fulfilled for any γ < H,
since IH+1/2,1 ⊂ IH−ǫ,2 for any ǫ sufficiently small.

3 Existence and uniqueness of the solution of

(E)

In the following, we denote by c any irrelevant constant appearing in the
computations.

Definition 3.1 By a solution of the equation (E), we mean a real-valued,
progressively measurable stochastic process X = {Xt, t ∈ I} such that X
belongs to L2(Ω× [0, 1],P⊗ dt) and for any t, Xt is a.s. a solution of (E).

In the sequel, r will denote a fixed real strictly greater

than max(2, γ−1).

Theorem 3.2 Let b and σ be L–Lipschitz continuous with respect to their
second variable, uniformly with respect to their first variable : For all t in
[0, 1], for all x, y in R,

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ L|x− y|.

Assume also that there exist x0 and y0 in R, such that b(., x0) and σ(., y0)
belong to Lr. The differential equation (E) has then a unique continuous
solution which belongs to Hγ−1/r−ǫ, for any ǫ ∈ (0, γ).
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Proof. The proof proceeds as usual by a fixed point technique. It is sufficient
to note that for any u and v two progressively measurable processes belonging
to Lr(Ω× [0, 1],P⊗ dt), we have :

1. The process
∫ t

0
K(t, s)usds +

∫ t

0
K(t, s)vs dBs is continuous (according

to (A) and theorem 2.1) and adapted, hence progressively measurable;

2. since Iγ+1/2,2 is continuously embedded in B, according to hypothesis
(A) , for any 1/r < δ < γ,

E[sup
s≤t

|

∫ t

0

K(t, s)us ds|
r] ≤ E[‖

∫ .

0

K(., s)us ds‖
r
Iδ,r

] (3.3)

≤ cE[

∫ t

0

|us|
r ds]; (3.4)

3. according to Theorem 2.1, for any 1/r < δ < γ,

E[sup
s≤t

|

∫ t

0

K(t, s)vs dBs|
r] ≤ cE[‖

∫ .

0

K(., s)vs dBs‖
r
Iδ,r

] (3.5)

≤ c ‖v‖rLr(Ω×[0,1]). (3.6)

The uniqueness is then a consequence of (3.4), (3.6) and the Gronwall lemma.
According to (3.4), (3.6), the Picard sequence defined by :

X0
t = x, Xn

t = x+

∫ t

0

K(t, s)b(s,Xn−1
s ) ds+

∫ t

0

K(t, s)σ(s,Xn−1
s ) dBs

is a Cauchy sequence in Lr(Ω× [0, 1],P⊗dt). We denote by X its limit. It is
clearly a continuous and adapted solution of (E). Furthermore, inequalities
(3.3) and (3.5) entail that the convergence also holds in Lr(Ω; Iδ,r), so that
the solution has a.s. (δ−1/r)-Hölder continuous sample-paths.

Remark : Note that in the case of the fBm of Hurst index H < 1/2,
we cannot work as usual in L2 but only in L1/H , hence we have to ensure
stronger regularity on the coefficients, i.e., b(., x0) and σ(., x0) must belong
to L1/H .

By the same techniques, we can prove that :

Theorem 3.3 Under the hypothesis of the previous theorem, the map which
sends x to the solution of (E) with initial condition x is continuous from R

in Lr(Ω× [0, 1],P⊗ dt).
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4 Gross-Sobolev regularity of X

We are now interested in the Gross-Sobolev differentiability of Xt.

Lemma 4.1 For u adapted belonging to L2(Ω×[0, 1];D2,1), for any t ∈ [0, 1],

the distribution ∇(
∫ t

0
K(t, s)us dBs) exists as a L

2(Ω× [0, t]) random variable
and satisfies :

‖∇(

∫ t

0

K(t, s)us ds)‖L2(Ω×[0,t]) ≤ c ‖u‖L2(Ω×[0,t]) (4.7)

Lemma 4.2 For u bounded, adapted belonging to L2(Ω × [0, 1];D2,1), for

any t ∈ [0, 1], the distribution ∇(
∫ t

0
K(t, s)us dBs) exists as a L2(Ω × [0, t])

random variable and satisfies :

‖∇(

∫ t

0

K(t, s)us dBs)‖L2(Ω×[0,t]) ≤ c ‖u‖L2(Ω×[0,t];D2,1). (4.8)

Proof. We only prove (4.8) since inequality (4.7) is simpler to show and its
proof proceeds along the same lines. According to (A), for any t, the random
variable

∫ t

0
K(t, s)us dBs belongs to L

r(Ω,P) and thus has a derivative in the
distributional sense. For any ξ ∈ D∞(L2),

〈∇(

∫ t

0

K(t, s)us dBs), ξ〉D−∞,D∞
= E[

∫ t

0

K(t, s)us dBs δ(ξ)]

=E[

∫ t

0

K(t, s)us ξs ds] + E[

∫ t

0

K(t, s)
(

∫ t

0

∇rus ξr dr
)

dBs].

Hypothesis (A) induces that for any ξ ∈ D∞(L2), we have :

E[|

∫ t

0

K(t, s)us ξs ds|] ≤ c ‖K(t, .)u‖L2(Ω×[0,1])‖ξ‖L2(Ω×[0,1])

≤ c ‖u‖∞‖K∗(ǫt)‖L2‖ξ‖L2(Ω×[0,1]).

Since ǫt belongs to the dual of Iγ+1/2,2, according to (A), we have :

‖K∗(ǫt)‖L2 ≤ c ‖ǫt‖I∗

γ+1/2,2
= ctγ. (4.9)
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According to theorem 2.1 for r = 2, since Iγ−ǫ,2 ⊂ L2, for any ξ ∈ D∞(L2),

E[|

∫ t

0

ξτ

∫ t

0

K(t, s)∇τus dBs dτ |]

≤ c ‖ξ‖L2(Ω×[0,1])E[

∫ t

0

∫ s

0

|∇τus|
2 dτ ds]1/2. (4.10)

The result is then a consequence of (4.9) and (4.10) and Proposition 3 of [15,
page 37].

Remark : If γ > 1/2, inequalities (4.7) and (4.8) are true uniformly with
respect to t, i.e., for instance,

‖sup
t≤T

∇(

∫ t

0

K(t, s)us dBs)‖L2(Ω×[0,T ]) ≤ c ‖u‖L2(Ω×[0,T ];D2,1).

Theorem 4.3 The hypothesis of Theorem 3.2 are assumed to hold. More-
over, b and σ are supposed to be once continuously differentiable with respect
to their space variable, with bounded derivative; assume furthermore that σ
is bounded. For any t ∈ I, the value at t of the solution of Eqn. (E), denoted
by Xt, belongs to D2,1. For any ξ ∈ H,

< Xt, ξ >H=

∫ t

0

K(t, s)σ(Xs)ξs ds

+

∫ t

0

K(t, u)
∂b

∂x
(u,Xu) < ∇Xu, ξ >H du

+

∫ t

0

K(t, u)
∂σ

∂x
(u,Xu) < ∇Xu, ξ >H dBu.

(4.11)

Moreover, for ξ ∈ Lr(Ω× [0, 1]), (< ∇Xt, ξ >H, t ∈ [0, 1]) belongs to Lr(Ω×
[0, 1]).

Proof. LetXn be the Picard sequence already defined in the proof of theorem
3.2. Using lemmas 4.1 and 4.2, we prove by induction on n that Xn belongs
to D2,1 and that :

‖Xn
t ‖

2
D2,1

≤ c

∫ t

0

‖Xn−1
s ‖2

D2,1
ds ≤

(ct)n

n!
x2.
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It follows that supn‖X
n
t ‖D2,1 is finite and thus that there exists a weakly

convergent subsequence in D2,1. Since Xn
t converges to Xt in L2(Ω), the

closability of ∇ entails that Xt belongs to D2,1. Since for any n,

< Xn
t , ξ >H=

∫ t

0

K(t, s)σ(Xn−1
s )ξs ds

+

∫ t

0

K(t, u)
∂b

∂x
(u,Xn−1

u ) < ∇Xn−1
u , ξ >H du

+

∫ t

0

K(t, u)
∂σ

∂x
(u,Xn−1

u ) < ∇Xn−1
u , ξ >H dBu,

a straightforward application of the dominated convergence theorem yields to
(4.11). Since Lr is continuously imbedded in L2 and Iγ+1/2,2 is continuously
embedded in C0([0, 1];R), we have :

E[sup
s≤t

| < ∇Xs, ξ >H |r] ≤ c
(

E[

∫ 1

0

|ξs|
r ds] + E[

∫ t

0

| < ∇Xs, ξ >H |r ds]
)

≤ c
(

E[

∫ 1

0

|ξs|
r ds] + E[

∫ t

0

sup
u≤s

| < ∇Xu, ξ >H |r ds]
)

.

By Gronwall lemma, it follows that< ∇X., ξ >H belongs to Lr(Ω×[0, 1]).

Theorem 4.4 Assume that the hypothesis of Theorem 4.3 hold. For any
ξ ∈ Lr(Ω× [0, 1]), the equation

Yt =< K(t, .)σ ◦X, ξ >H +

∫ t

0

K(t, u)
∂b

∂x
(u,Xu)Yu du

+

∫ t

0

K(t, u)
∂σ

∂x
(u,Xu)Yu dBu (4.12)

has one and only one solution belonging to Lr(Ω× [0, 1]).

Proof. Theorem 4.3 stands that the process (〈∇Xt, ξ〉H, t ∈ [0, 1]) is a solu-
tion of (4.12) with the desired integrability property.

If Y and Z are two such solutions, according to hypothesis (A) and to
theorem 2.1, we have :

E[|Yt − Zt|
r] ≤ c

∫ t

0

E[|Ys − Zs|
r] ds.

By iteration, this induces that Y = Z, P⊗ dt almost everywhere.
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Theorem 4.5 Assume that the hypothesis of theorem 4.3 hold. Let V0(t, s)
be a measurable deterministic kernel such that :

∫ 1

0

∫ 1

0

|V0(u, s)|
r du ds <∞. (4.13)

For n ≥ 1, consider

Vn+1(t, s) =

∫ t

s

K(t, u)
∂b

∂x
(u,Xu)Vn(u, s) du

+

∫ t

s

K(t, u)
∂σ

∂x
(u,Xu)Vn(u, s) dBu.

The two following properties hold :

V1 L(t, s) =
∑+∞

n=0 Vn(t, s) is a convergent series in Lr(Ω× [0, 1]2).

V2 L(t, s) is a solution of

L(t, s)− V0(t, s) =

∫ t

s

K(t, u)
∂b

∂x
(u,Xu)L(u, s) du

+

∫ t

s

K(t, u)
∂σ

∂x
(u,Xu)L(u, s) dBu. (4.14)

Proof. By the techniques used above, we can show that :

∫ ζ

0

∫ 1

0

|Vn+1(t, s)|
r dt ds ≤ c

∫ ζ

0

∫ 1

0

∫ t

s

|Vn(u, s)|
r du ds dt,

hence if we set

ψn(t) =

∫ t

0

∫ 1

0

|Vn(u, s)|
r ds du,

the previous equation reads as

ψn+1(ζ) ≤ c

∫ ζ

0

ψn(t) dt.
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Applying Gronwall lemma and (4.13), it follows that the series
∑

n Vn is
convergent in Lr(Ω× [0, 1]2). Moreover, it is straightforward that :

∫ t

s

K(t, u)
∂b

∂x
(u,Xu)

n
∑

j=0

Vj(u, s) du

+

∫ t

s

K(t, u)
∂σ

∂x
(u,Xu)

n
∑

j=0

Vj(u, s) dBu =

n+1
∑

j=0

Vj(t, s)− V0(t, s).

According to hypothesis (A) and theorem 2.1, the left-hand-side of the last
equation converges to the right-hand-side of (4.14).

Hypothesis (B)– We assume that there exist g an almost surely positive
function such that V0(t, s) = K(t, s)g(s) satisfies (4.13).

Theorem 4.6 (Parameter variation formula) Assume that all the hy-
pothesis made so far hold. Consider the space H0 of elements of H satisfying
ξg−1 ∈ Lr. Let L be defined as in the previous theorem with the value of V0
taken in hypothesis (B). For any ξ ∈ H0, let Yt =

∫ t

0
L(t, s)σ(Xs)g

−1(s)ξ(s) ds.
For any t ∈ [0, 1], we have < ∇Xt, ξ >H= Yt, P almost surely.

Proof. For ξ ∈ H0, since σ is bounded, Y belongs to Lr(Ω × [0, 1]). It is
clear that Y is a formal solution of (4.12) hence by theorem 4.4, the equality
< ∇Xt, ξ >H= Yt follows.

Remark : For the fractional Brownian motion, it is proved in [3] that

0 ≤ KH(t, s) ≤ c (t− s)H−1/2s−|H−1/2|,

hence hypothesis (B) is satisfied with g(s) = s|H−1/2|. It is a little counter-
intuitive that as H increases towards 1, hypothesis (B) requires an increasing
value of ν to be fulfilled. It is due to the increasing singularity of KH(t, s)
whereas KH as a map is more and more regularizing.
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A Deterministic fractional calculus

For f ∈ L1([0, 1]), the left and right fractional integrals of f are defined by :

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

f(t)(x− t)α−1dt , x ≥ 0,

(Iαb−f)(x) =
1

Γ(α)

∫ b

x

f(t)(t− x)α−1dt , x ≤ b,

where α > 0 and I0 = Id. In what follows, T is a real in (0, 1]. For any α ≥ 0,
any f ∈ Lp([0, T ]) and g ∈ Lq([0, T ]) where p−1 + q−1 ≤ α, we have :

∫ T

0

f(s)(Iα0+g)(s) ds =

∫ T

0

(IαT−f)(s)g(s) ds. (A.15)

The Besov space Iα0+(L
p([0, T ])) = Iα,p([0, T ]) is usually equipped with the

norm :

‖f‖Iα,p = ‖I−α
0+ f‖Lp([0,T ]).

We then have the following continuity results (see [4, 13]) :

Proposition A.1
For each 0 < T ≤ 1,

1. If 0 < α < 1, 1 < p < 1/α, then Iα0+ is a bounded operator from
Lp([0, T ]) into Lq([0, T ]) with q = p(1− αp)−1.

2. For any 0 < α < 1 and any p ≥ 1, Iα,p([0, T ]) is continuously embedded
in Hα−1/p([0, T ]) provided that α−1/p > 0. Hν([0, T ]) denotes the space
of Hölder–continuous functions, null at time 0, equipped with the usual
norm :

‖f‖Hν([0,T ]) = sup
0≤t6=s≤T

|f(t)− f(s)|

|t− s|ν
.

By I−α
0+ , respectively I

−α
1− , we mean the inverse map of Iα0+ , respectively I

α
1− .

When we don’t precise the interval [0, T ] in the notations of Lp spaces or of
Besov spaces, it is meant that T = 1.
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B Malliavin calculus

We only give the few results we need, further details can be found in [9, 15].
We work on the standard Wiener space (Ω,H,P) where Ω is the Banach space
of continuous functions from [0, 1] into R, null at time 0, equipped with the
sup-norm. H is the Hilbert space of absolutely continuous function with the
norm ‖h‖H = ‖ḣ‖L2, where ḣ is the time derivative of h. A mapping φ from
Ω into some separable Hilbert space X is called cylindrical if it is of the form
φ(w) = f(< v1, w >, · · · , < vn, w >) where f ∈ C∞

0 (Rn, X) and vi ∈ Ω⋆ for
i = 1, · · · , n. For such a function we define ∇φ as

∇φ(w) =
n

∑

i=1

∂if(< v1, w >, · · · , < vn, w >)ṽi ,

where ṽi is the image of vi under the injection Ω⋆ →֒ L2. From the quasi-
invariance of the Wiener measure, it follows that ∇ is a closable operator on
Lp(Ω;X), p ≥ 1, and we will denote its closure with the same notation. The
powers of ∇ are defined by iterating this procedure. For p > 1, k ∈ N, we
denote by Dp,k(X) the completion of X-valued cylindrical functions under
the following norm

‖φ‖p,k =
k

∑

i=0

‖∇iφ‖Lp(Ω;X⊗(L2)⊗i) .

Let us denote by δ the formal adjoint of ∇ with respect to Wiener measure,
a classical result stands that δ is an extension of the Itô integral thus we have

E[

∫ t

0

us dBs ϕ] = E[

∫ t

0

us∇sϕds] (B.16)

for any u adapted in L2(Ω;L2) and any ϕ ∈ D2,1, where {Bt = δ(1[0,t]), t ∈
[0, 1]} is a standard Brownian motion on (Ω,P).
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