Number of hidden states and memory: a joint order estimation problem for Markov chains with Markov regime - Archive ouverte HAL
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2009

Number of hidden states and memory: a joint order estimation problem for Markov chains with Markov regime

Antoine Chambaz
Catherine Matias

Résumé

This paper deals with order identification for Markov chains with Markov regime (MCMR) in the context of finite alphabets. We define the joint order of a MCMR process in terms of the number k of states of the hidden Markov chain and the memory m of the conditional Markov chain. We study the properties of penalized maximum likelihood estimators for the unknown order (k,m) of an observed MCMR process, relying on information theoretic arguments. The novelty of our work relies in the joint estimation of two structural parameters. Furthermore, the different models in competition are not nested. In an asymptotic framework, we prove that a penalized maximum likelihood estimator is strongly consistent without prior bounds on k and m. We complement our theoretical work with a simulation study of its behaviour. We also study numerically the behaviour of the BIC criterion. A theoretical proof of its consistency seems to us presently out of reach for MCMR, as such a result does not yet exist in the simpler case where m = 0 (that is for hidden Markov models).
Fichier principal
Vignette du fichier
Chambaz_2009_ESAIM Prob Stat_1.pdf (249.4 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00262066 , version 1 (31-05-2020)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Antoine Chambaz, Catherine Matias. Number of hidden states and memory: a joint order estimation problem for Markov chains with Markov regime. ESAIM: Probability and Statistics, 2009, 13, pp.38-50. ⟨10.1051/ps:2007048⟩. ⟨hal-00262066⟩
218 Consultations
169 Téléchargements

Altmetric

Partager

More