New Clustering methods for interval data - Archive ouverte HAL Access content directly
Journal Articles Computational Statistics Year : 2006

New Clustering methods for interval data


In this paper we propose two clustering methods for interval data based on the dynamic cluster algorithm. These methods use different homogeneity criteria as well as different kinds of cluster representations (prototypes). Some tools to interpret the final partitions are also introduced. An application of one of the methods concludes the paper.
Fichier principal
Vignette du fichier
new-clust-interval-preprint.pdf (187.2 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00260959 , version 1 (05-03-2008)



Marie Chavent, Francisco de A.T. de Carvahlo, Yves Lechevallier, Rosanna Verde. New Clustering methods for interval data. Computational Statistics, 2006, 21, pp.211-229. ⟨10.1007/s00180-006-0260-0⟩. ⟨hal-00260959⟩
200 View
1162 Download



Gmail Facebook X LinkedIn More