Estimation de densité par ensembles aléatoires de poly-arbres - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

Estimation de densité par ensembles aléatoires de poly-arbres

Résumé

Ensembles of weakly fitted randomized models have been studied intensively and used successfully in the supervised learning literature during the last two decades. Among the advantages of these methods, let us quote the improved scalability of the learning algorithm thanks to its randomization and the improved predictive accuracy the induced models thanks to the higher flexibility in terms of bias/variance trade-off. In the present work we propose to explore this idea in the context of density estimation. We propose a new family of unsupervised learning methods of mixtures of large ensembles of randomly generated poly-trees. The specific feature of these methods is their scalability to very large numbers of variables and training instances. We explore these methods empirically on a set of discrete test problems of growing size. We finally discuss possible extensions which we plan to study.
Fichier principal
Vignette du fichier
EstimationDensite.pdf (148.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00259868 , version 1 (22-04-2008)

Identifiants

  • HAL Id : hal-00259868 , version 1

Citer

Sourour Ammar, Philippe Leray, Louis Wehenkel. Estimation de densité par ensembles aléatoires de poly-arbres. Journées Francophone sur les Réseaux Bayésiens, May 2008, Lyon, France. ⟨hal-00259868⟩
151 Consultations
130 Téléchargements

Partager

More