Fixed Point and Aperiodic Tilings - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

Fixed Point and Aperiodic Tilings

Résumé

An aperiodic tile set was first constructed by R.Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from logic (the Entscheidungsproblem) to physics (quasicrystals) We present a new construction of an aperiodic tile set that is based on Kleene's fixed-point construction instead of geometric arguments. This construction is similar to J. von Neumann self-reproducing automata; similar ideas were also used by P. Gacs in the context of error-correcting computations. The flexibility of this construction allows us to construct a ``robust'' aperiodic tile set that does not have periodic (or close to periodic) tilings even if we allow some (sparse enough) tiling errors. This property was not known for any of the existing aperiodic tile sets.
Fichier principal
Vignette du fichier
fpt.pdf (184.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00256364 , version 1 (17-02-2008)
hal-00256364 , version 2 (19-02-2008)
hal-00256364 , version 3 (07-07-2008)
hal-00256364 , version 4 (13-01-2010)
hal-00256364 , version 5 (27-01-2010)

Identifiants

Citer

Bruno Durand, Andrei Romashchenko, Alexander Shen. Fixed Point and Aperiodic Tilings. 12th International Conference on Developments in Language Theory, Sep 2008, Kyoto, Japan. pp.276-288, ⟨10.1007/978-3-540-85780-8_22⟩. ⟨hal-00256364v3⟩
288 Consultations
287 Téléchargements

Altmetric

Partager

More