Curvelets and Ridgelets
Résumé
Despite the fact that wavelets have had a wide impact in image processing, they fail to efficiently represent objects with highly anisotropic elements such as lines or curvilinear structures (e.g. edges). The reason is that wavelets are non-geometrical and do not exploit the regularity of the edge curve. The Ridgelet and the Curvelet [3, 4] transforms were developed as an answer to the weakness of the separable wavelet transform in sparsely representing what appears to be simple building atoms in an image, that is lines, curves and edges. Curvelets and ridgelets take the form of basis elements which exhibit high directional sensitivity and are highly anisotropic [5, 6, 7, 8]. These very recent geometric image representations are built upon ideas of multiscale analysis and geometry. They have had an important success in a wide range of image processing applications including denoising [8, 9, 10], deconvolution [11, 12], contrast enhancement [13], texture analysis [14, 15], detection [16], watermarking [17], component separation [18], inpainting [19, 20] or blind source separation
[21, 22]. Curvelets have also proven useful in diverse fields beyond the traditional image processing application. Let’s cite for example seismic imaging [10, 23, 24], astronomical imaging [25, 26, 27], scientific computing and analysis of partial differential equations [28, 29]. Another reason for the success of ridgelets and curvelets is the availability of fast transform algorithms which are available in non-commercial software packages following the philosophy of reproducible research, see [30, 31].
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...