Existence of non-trivial harmonic functions on Cartan-Hadamard manifolds of unbounded curvature - Archive ouverte HAL
Article Dans Une Revue Mathematische Zeitschrift Année : 2009

Existence of non-trivial harmonic functions on Cartan-Hadamard manifolds of unbounded curvature

Résumé

The Liouville property of a complete Riemannian manifold (i.e., the question whether there exist non-trivial bounded harmonic functions) attracted a lot of attention. For Cartan-Hadamard manifolds the role of lower curvature bounds is still an open problem. We discuss examples of Cartan-Hadamard manifolds of unbounded curvature where the limiting angle of Brownian motion degenerates to a single point on the sphere at infinity, but where nevertheless the space of bounded harmonic functions is as rich as in the non-degenerate case. To see the full boundary the point at infinity has to be blown up in a non-trivial way. Such examples indicate that the situation concerning the famous conjecture of Greene and Wu about existence of non-trivial bounded harmonic functions on Cartan-Hadamard manifolds is much more complicated than one might have expected.
Fichier principal
Vignette du fichier
bs.pdf (415.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00245623 , version 1 (07-02-2008)

Identifiants

Citer

Marc Arnaudon, Anton Thalmaier, Stefanie Ulsamer. Existence of non-trivial harmonic functions on Cartan-Hadamard manifolds of unbounded curvature. Mathematische Zeitschrift, 2009, 263, pp.369-409. ⟨10.1007/s00209-008-0422-6⟩. ⟨hal-00245623⟩

Collections

CNRS UNIV-POITIERS
139 Consultations
282 Téléchargements

Altmetric

Partager

More