Efficient models for photoionization produced by non-thermal gas - Archive ouverte HAL
Article Dans Une Revue Plasma Sources Science and Technology Année : 2007

Efficient models for photoionization produced by non-thermal gas

Résumé

This paper presents formulation of computationally efficient models of photoionization produced by non-thermal gas discharges in air based on three-group Eddington and improved Eddington (SP3) approximations to the radiative transfer equation, and on effective representation of the classic integral model for photoionization in air developed by Zheleznyak et al (1982) by a set of three Helmholtz differential equations. The reported formulations represent extensions of ideas advanced recently by Ségur et al (2006) and Luque et al (2007), and allow fast and accurate solution of photoionization problems at different air pressures for the range 0.1< pO2 R< 150 Torr cm , where pO2 is the partial pressure of molecular oxygen in air in units of Torr ( pO2=150 Torr at atmospheric pressure) and R in cm is an effective geometrical size of the physical system of interest. The presented formulations can be extended to other gases and gas mixtures subject to availability of related emission, absorption and photoionization coefficients. The validity of the developed models is demonstrated by performing direct comparisons of the results from these models and results obtained from the classic integral model. Specific validation comparisons are presented for a set of artificial sources of photoionizing radiation with different Gaussian dimensions, and for a realistic problem involving development of a double-headed streamer at ground pressure. The reported results demonstrate the importance of accurate definition of the boundary conditions for the photoionization production rate for the solution of second order partial differential equations involved in the Eddington, SP3 and the Helmholtz formulations. The specific algorithms derived from the classic photoionization model of Zheleznyak et al (1982), allowing accurate calculations of boundary conditions for differential equations involved in all three new models described in this paper, are presented. It is noted that the accurate formulation of boundary conditions represents an important task needed for a successful extension of the proposed formulations to two- and three-dimensional physical systems with obstacles of complex geometry (i.e. electrodes, dust particles, aerosols, etc), which are opaque for the photoionizing UV photons.

Dates et versions

hal-00222724 , version 1 (29-01-2008)

Identifiants

Citer

Anne Bourdon, Victor Pasko, Ningyu Y. Liu, Sébastien Célestin, Pierre Ségur, et al.. Efficient models for photoionization produced by non-thermal gas. Plasma Sources Science and Technology, 2007, 16, pp.656-678. ⟨10.1088/0963-0252/16/3/026⟩. ⟨hal-00222724⟩
142 Consultations
0 Téléchargements

Altmetric

Partager

More