Relaxation rate, diffusion approximation and Fick's law for inelastic scattering Boltzmann models - Archive ouverte HAL
Article Dans Une Revue Kinetic and Related Models Année : 2008

Relaxation rate, diffusion approximation and Fick's law for inelastic scattering Boltzmann models

Résumé

We consider the linear dissipative Boltzmann equation describing inelastic interactions of particles with a fixed background. For the simplified model of Maxwell molecules first, we give a complete spectral analysis, and deduce from it the optimal rate of exponential convergence to equilibrium. Moreover we show the convergence to the heat equation in the diffusive limit and compute explicitely the diffusivity. Then for the physical model of hard spheres we use a suitable entropy functional for which we prove explicit inequality between the relative entropy and the production of entropy to get exponential convergence to equilibrium with explicit rate. The proof is based on inequalities between the entropy production functional for hard spheres and Maxwell molecules. Mathematical proof of the convergence to some heat equation in the diffusive limit is also given. From the last two points we deduce the first explicit estimates on the diffusive coefficient in the Fick's law for (inelastic hard-spheres) dissipative gases.
Fichier principal
Vignette du fichier
LMTsubmit.pdf (270.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00220504 , version 1 (28-01-2008)

Identifiants

Citer

Bertrand Lods, Clément Mouhot, Giuseppe Toscani. Relaxation rate, diffusion approximation and Fick's law for inelastic scattering Boltzmann models. Kinetic and Related Models , 2008, 1 (2), pp.223-248. ⟨hal-00220504⟩
312 Consultations
329 Téléchargements

Altmetric

Partager

More