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CLÉMENT MOUHOT

CNRS & Université Paris-Dauphine
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ABSTRACT. We consider the linear dissipative Boltzmann equation describing inelastic
interactions of particles with a fixed background. For the simplified model of Maxwell
molecules first, we give a complete spectral analysis, and deduce from it the optimal rate
of exponential convergence to equilibrium. Moreover we show the convergence to the heat
equation in the diffusive limit and compute explicitely thediffusivity. Then for the physical
model of hard spheres we use a suitable entropy functional for which we prove explicit
inequality between the relative entropy and the productionof entropy to get exponential
convergence to equilibrium with explicit rate. The proof isbased on inequalities between
the entropy production functional for hard spheres and Maxwell molecules. Mathematical
proof of the convergence to some heat equation in the diffusive limit is also given. From
the last two points we deduce the first explicit estimates on the diffusive coefficient in the
Fick’s law for (inelastic hard-spheres) dissipative gases.

1. Introduction. The linear Boltzmann equation forgranular particlesmodels the dy-
namics of dilute particles (test particles with negligiblemutual interactions) immersed in a
fluid at thermal equilibrium that undergoinelastic collisionscharacterized by the fact that
the total kinetic energy of the system is dissipated during collision. Such an equation in-
troduced in [16, 21, 15] provides an efficient description ofthe dynamics of a mixture of
impurities in a gas [13, 10]. Assuming the fluid at thermal equilibrium and neglecting the
mutual interactions of the particles, the evolution of the distribution of the particles phase
is modelled by the linear Boltzmann equation which reads

∂t f + v · ∇x f = Q( f ), (1.1)

with suitable initial conditionf (x, v, 0) = f0(x, v), (x, v) ∈ R3
x × R3

v. Here above, the
collision operatorQ(·) is a linear scattering operatorgiven by

Q( f ) = B( f ,M1),
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whereB(·, ·) denotes the usual quadratic Boltzmann collision operator for granular gases
(cf. [9] for instance) andM1 stands for the distribution function of the host fluid which is
assumed to be a given Maxwellian with bulk velocityu1 and temperatureΘ1 (see Section 2
for details). Notice that we shall deal in this paper with thecollision operatorQ correspond-
ing to hard-spheres interactionsas well as with the one associated toMaxwell molecules
interactions. The inelasticity is modeled by aconstant normal restitution coefficient. The
main goals and results of this paper are the following:

(1) First, we explicit the exponential rate of convergence towards equilibrium for the so-
lution to the space-homogeneous version of (1.1) (for both Maxwellian molecules and
hard-spheres interactions)through a quantitative estimate of the spectral gap ofQ.
It is computed in an explicit way for Maxwell molecules, and estimated in an explicit
way for hard-spheres, see Theorem 3.8 (together with its Corollary 3.9 for its conse-
quence on the asymptotic behavior of space-homogeneous solutions), whereµmax is
defined in Theorem 3.2, and the constantC∗ is detailed in Remark 3.6.

(2) Second, we investigate the problem of thediffusion approximation for (1.1). Pre-
cisely, we show that the macroscopic limit̺ of Eq. (1.1) in the diffusive scaling
is the solution to some (parabolic) heat equation (see Proposition 4.3 together with
Theorems 4.4 and 4.9).When dealing with Maxwell molecules interactions, the
diffusivity of this heat equation can then be computed explicitly (see Theorem 4.4
together with the computation of Remark 4.5 for the diffusivity). This is no more
the case for the equation corresponding to hard-spheres interactions but we provide
some new quantitative estimates on it(see Theorem 4.9 together with the estimate of
Proposition 4.10).

Concerning point (1), it is known from [16, 21, 15] that the linear collision operator
admits a unique steady state given by a (normalized) Maxwellian distribution functionM
with bulk velocityu1 and temperatureΘ#

6 Θ1. Moreover, thanks to the spectral analysis
of Q performed in [1] (in the hard-spheres case), the solution tothe space-homogeneous
version of (1.1) is known to converge exponentially (in somepertinentL2 norm) towards
this equilibriumM as times goes to infinity. This exponential convergence result is based
upon the existence of a positive spectral gap for the collision operatorQ and relies on
compactness arguments, via Weyl’s Theorem.Because of this non constructive approach,
at least for hard-spheres interactions, no explicit estimate on the relaxation rate were
available by now. It is one of the objectives of this paper to fill this blank. Itis well-known
that the kinetic description of gases through the Boltzmannequation is relevantonly on
some suitable time scale[9, 11]. Providing explicit estimates of the relaxation rate is the
only way to make sure that the time scale for the equilibration process is smaller than the
one on which the kinetic modeling is relevant. Another motivation to look for an explicit
relaxation rate relies more on methodological aspects. Compactness methods do not rely
on any physical argument and it seems to us more natural to look for a method which relies
as much as possible on physical mechanisms, e.g. dissipation of entropy.

Precisely, the strategy we adopt to treat the above point (1)is based upon an explicit
estimate of the spectral gap ofQ. For Maxwell molecules interactions, we use the Fourier-
based approach introduced by Bobylev [6] for the study of thelinearized (elastic) Boltz-
mann equation and then used for the study of the spectrum of the linearizedinelastic col-
lision operator in [7], and we provide an explicit description of the whole spectrum of this
linear scatteringcollision operator . Then, to treat the case of hard-spheresinteractions,
our method is based upon theentropy-entropy-production method. Precisely, we show that
the entropy production functional (naturally associated to theL2(M−1) norm) correspond-
ing to the hard-spheres model can be bounded from below (up tosome explicit constant)
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by the one associated to the Maxwell molecules model (Proposition 3.3). Note that such
a comparison between entropy production rates for hard-spheres and Maxwell molecules
interactions is inspired by the approach of [2] which deals with the linearized (elastic)
Boltzmann equation. In the present case, the method of proofis different and simpler, be-
ing based upon the careful study of a convolution integral. Such an entropy production
estimate allows us to prove, via a suitable coercivity estimate ofQ (Theorem 3.8), that any
space-homogenous solution to (1.1) converges exponentially towards equilibrium with an
explicit rate that depends on the model under investigation.

Concerning now point (2), various attempts to derive hydrodynamic equations from the
dissipative nonlinear Boltzmann equation exist in the literature, mostly based upon suitable
moment closure methods [23, 4, 5] or on the study of the linearized version of the Boltz-
mann equation around self-similar solutions (homogeneouscooling state) [3, 8] in some
weak inelastic regime. Dealing with the linear Boltzmann equation (1.1), hydrodynamic
models describing the evolution of the momentum and the temperature of the gas have been
obtained in [10] as a closed set ofdissipative Euler equationsfor some pseudo-Maxwellian
approximation ofQ. Similar results have been obtained in [13] where numericalmethods
are proposed for the resolution of both the kinetic and hydrodynamic models. The work [4]
proposes two closure methods, based upon a maximum entropy principle, of the moment
equations for the density, macroscopic velocity and temperature. These closure methods
lead to a single diffusion equation for the hydrodynamical variable. In the present paper, we
shall discuss the diffusion approximation of the linear Boltzmann equation (1.1) with the
main objective of providing arigorous derivation of the Fick’s law for dissipative gases
and an estimate on the diffusive coefficient. Recall that the diffusion approximation for
the linear Boltzmann equation consists in looking for the limit, as the small parameterε
goes to0, of the solution to the following re-scaled kinetic equation:

ε∂t fε(t, x, v)+ v · ∇x fε(t, x, v) =
1

ε
Q( fε)(t, x, v), (1.2)

with suitable initial condition. We consider indeed here theNavier-Stokes scaling, namely,
we assume the mean free path to be a small parameterλ = ε ≪ 1 and, at the same time,
we rescale time ast → t/ε in order to see emerging the diffusive hydrodynamical regime
(and not the Euler hydrodynamical description, which wouldbe a trivial transport equation
in our case). Performing a formal Hilbert asymptotic expansion of the solution allows us
to expect the solutionfε to converges towards a limitf with Q( f ) = 0. Therefore, the
expected limit offε is of the formf (t, x, v) = ̺(t, x)M(v), and the diffusion approximation
problem consists in expressing̺(t, x) as the solution to some suitable diffusion equation.
Actually, standard approach consists in using the continuity relation

∂t̺(t, x)+ divx j(t, x) = 0,

between the density̺and the current vectorj(t, x) together with a suitableFick’s law that
links the currentj to the gradient of̺ :

j(t, x) = −D∇x̺(t, x)

for some suitable diffusion coefficient (diffusivity)D > 0 which depends on the kind of
interactions we are dealing with. For Maxwell molecules interactions, the expression of
the diffusivity can be made explicit while this is no more thecase when dealing with hard-
spheres model. The method we adopt for the proof of the diffusive limit follows very
closely the work of P. Degond, T. Goudon and F. Poupaud [12]. Though more general than
ours since it deals with models without detailed balance law, the study of [12] is restricted
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to the case of a collision operator for which the collision frequency is controlled from above
in a way that excludes the case of physical hard-spheres interactions (recall that, for hard-
spheres, the collision frequency behaves asymptotically like (1 + |v|) [1]). Actually, the
analysis of [12] can be make valid under the only hypothesis that the coercivity estimate
obtained in Theorem 3.8 (and strenghten in Theorem 3.10) holds true. Precisely, such a
coercivity estimate ofQ allows to obtain satisfactorya priori boundsfor the solution to the
re-scaled equation (1.2). We are then able to prove the weak convergence of the density̺ε
and currentjε of the solutionfε towards suitable limit density̺ and limit currentj. It is
also possible, via compensated-compactness arguments from [14, 17, 22] to prove strong
convergence result inL2 norm.

The organization of the paper is as follows. In Section 2 we present the models we shall
deal with as well as some related known results we shall use inthe sequel. In Section 3 we
perform the computations of the spectrum in the Maxwell molecules case and then prove
the crucial entropy production estimates in the hard-spheres case (from which we deduces
the explicit convergence rate to equilibrium for the space-homogenous version of (1.1)).
Section 4 is dealing with the above point(2). We first provea priori estimates valid for both
models of hard-spheres and Maxwell molecules and based uponthe coercivity estimates
obtained in Section 3. Then, we deal separately with the cases of Maxwell molecules
and hard-spheres proving for both models the convergence towards suitable macroscopic
equations, providing for Maxwell molecules an explicit expression of the diffusivity, and
for hard-spheres explicit estimates on it.

2. Preliminaries.

2.1. The model. As explained in the introduction, we shall deal with alinear scattering
operatorQ given by

Q( f ) =
1

2πλ

∫

R3×S2

B(q, n)
[
JB f (x, v⋆, t)M1(w⋆) − f (x, v, t)M1(w)

]
dw dn (2.1)

whereλ is the mean free path,q = v − w is the relative velocity,v⋆ andw⋆ are the pre-
collisional velocities which result, respectively, inv andw after collision. The main feature
of thebinary dissipative collisionsis that part of the normal relative velocity is lost in the
interaction, so that

(v⋆ − w⋆) · n = −e(v − w) · n, (2.2)

wheren ∈ S2 is the unit vector in the direction of impact and0 < e < 1 is the so-called
normal restitution coefficient. Generally, such a coefficient should depend on(v,w) but,
for simplicity, we shall only deal with aconstant normal restitution coefficiente. The
collision kernelB(q, n) depends on the microscopic interaction (see below) while the term
JB corresponds to the product of the Jacobian of the transformation (v⋆,w⋆)→ (v,w) with
the ratio of the lengths of the collision cylinders [9]. Notethat in such a scattering model,
the microscopic masses of the dilute particlesm and that of the host particlesm1 can be
different. We will assume throughout this paper that the distribution functionM1 of the
host fluid is a given normalized Maxwellian function:

M1(v) =
(

m1

2πΘ1

)3/2

exp

{
−m1(v − u1)2

2Θ1

}
, v ∈ R3, (2.3)

whereu1 ∈ R3 is the given bulk velocity andΘ1 > 0 is the given effective temperature
of the host fluid. For particles of massesm colliding inelastically with particles of mass
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m1, the restitution coefficient being constant, the expression of the pre-collisional velocities
(v⋆,w⋆) are given by [9, 21]

v⋆ = v − 2α
1 − β

1 − 2β

(
q · n) n, w⋆ = w + 2(1 − α)

1 − β
1 − 2β

(
q · n) n; (2.4)

whereq = v − w, α is the mass ratio andβ denotes the inelasticity parameter

α =
m1

m +m1
∈ (0, 1), β =

1 − e

2
∈ [0, 1/2).

We shall investigate in this paper several collision operators corresponding to various inter-
actions collision kernels. Namely, we will deal with

• the linear Boltzmann operator forhard-sphere interactionsQ = Qhs for which

B(q, n) = Bhs(q, n) = |q · n|, and JBhs
=: Jhs =

1

e2
;

• the scattering operatorQ = Qmax corresponding to theMaxwell molecules approxi-
mation for which

B(q, n) = Bmax(q, n) = |̃q · n|, q̃ = q/|q|, and JBmax = Jmax =
1

e2

|v − w|
|v⋆ − w⋆| .

It will be sometimes convenient to express the collision operatorQ in the following weak
form:

< ψ,Q( f ) >=
1

2πλ

∫

R3×R3×S2

B(q, n) f (v)M1(w)
[
ψ(v⋆) − ψ(v)

]
dv dw dn (2.5)

for any regularψ, where(v⋆,w⋆) denote the post-collisional velocities given by

v⋆ = v − 2α(1 − β)
(
q · n) n, w⋆

= w + 2(1 − α)(1 − β)
(
q · n) n. (2.6)

In particular, one sees that the dissipative feature of microscopic collision is measured, at
the macroscopic level, only through the parameter:

κ = α(1 − β) =
α

2
(1 + e) ∈ (0, 1)

appearing in the expression ofv⋆. Accordingly, the macroscopic properties ofQ are those
of the classical linear Boltzmann gas wheneverκ = 1/2 (which is equivalent tov⋆ = v).
It can be shown for both cases that the number density of the dilute gas is the unique
conserved macroscopic quantity (as in the elastic case). Incontrast with the nonlinear
Boltzmann equation for granular gases, the temperature, though not conserved, remains
bounded away from zero, which prevents the solution to the linear Boltzmann equation to
converge towards a Dirac mass.

Moreover let us remark that from the dual form we see that the collision operator in fact
depends only on two real parametersm1 andκ (plusu1 of course) and notu1 plus three
parametersα, β,m1 as a first guess would suggest.

2.2. Universal equilibrium and H-Theorem. A very important feature of these inelastic
scattering models is the existence (and uniqueness) of auniversal equilibrium, that is in-
dependent of range of the microscopic-interactions (that is of the collision kernelB) and
depending only on the parametersm1, κ andu1. Precisely, the background forces the sys-
tem to adopt a Maxellian steady state (with density equal to1):
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Theorem 2.1. The Maxwellian velocity distribution:

M(v) =
(

m

2πΘ#

)3/2

exp

{
−m(v − u1)2

2Θ#

}
, v ∈ R3, (2.7)

with

Θ
#
=

(1 − α)(1 − β)

1 − α(1 − β)
Θ1 (2.8)

is the unique equilibrium state ofQ with unit mass.

Note that this universal equilibrium is coherent with the remark that the collision only
depends onm1 andκ (andu1) from the dual form, since

m

Θ#
=

m1

Θ1

1 − κ
κ

.

This explicit Maxwellian equilibrium state allows to develop entropy, spectral and hy-
drodynamical analysis on both the models in the same way. First, from [18, 19] and [15],
the existence and uniqueness of such an equilibrium state allows to establish a linear ver-
sion of the famousH–Theorem. Precisely, for anyconvexC1–functionΦ : R+ → R, the
associated so-calledH–functional (relatively to the equilibriumM)

HΦ( f |M) =

∫

R3

M(v)Φ

(
f (v)

M(v)

)
dv , (2.9)

is decreasing along the flow of the equation (1.1) (this is theopposite of a physical en-
tropy), with its associated dissipation functional vanishing only whenf is co-linear to the
equilibriumM:

Theorem 2.2(Formal H–Theorem). Let f (t, v) > 0 be a space homogeneous solution
then we have formally

d

dt
HΦ( f (t)|M) =

∫

R3
v

Q( f )(t, v)Φ′
(

f (t, v)

M(v)

)
dv 6 0 (t > 0). (2.10)

The application of theH-Theorem withΦ(x) = (x − 1)2 suggests the following Hilbert
space setting: the unknown distributionf has to belong to the weighted Hilbert space
L2(M−1) = L2(R3

v ; M−1(v) dv). Consequently, one defines the Maxwell molecules and
hard spheres collision operators,associated to the mean-free pathλ = 1, with their suitable
domains, as follows:

D(Lhs) ⊂ L2(M−1), Range(Lhs) ⊂ L2(M−1),

Lhs f = Qhs f for any f ∈ D(Lhs),

and 
D(Lmax) = L2(M−1), Range(Lmax) ⊂ L2(M−1),

Lmax f = Qmax f for any f ∈ D(Lmax).

Precisely,
D(Lhs) =

{
f ∈ L2(M−1) ; σhs f ∈ L2(M−1)

}

whereσhs is the collision frequency associated to the hard-spheres collision kernel:

σhs(v) =
1

2π

∫

R3×S2

|q · n|M1(w) dw dn, v ∈ R3.

Note thatσhs is unbounded [1]: there exist positive constantsν0, ν1 such that

ν0(1 + |v − u1|) 6 σhs(v) 6 ν1(1 + |v − u1|), ∀v ∈ R3.
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For this reason,D(Lhs) , L2(M−1). On the contrary, the collision frequencyσmax associ-
ated to the Maxwell molecules collision kernel,

σmax(v) =
1

2π

∫

R3×S2

|̃q · n|M1(w) dw dn = 1

is independent of the velocityv andLmax is a bounded operator inL2(M−1). We recall (see
[1]) thatLhs is a negative self–adjoint operator ofL2(M−1). Moreover, let us introduce the
dissipation entropy functionals associated toLmax andLhs:

Dmax( f ) := −
∫

R3

Lmax( f )(v) f (v)M−1(v) dv, f ∈ L2(M−1)

and

Dhs( f ) := −
∫

R3

Lhs( f )(v) f (v)M−1(v) dv, f ∈ D(Lhs).

Note that, by virtue of (2.10), iff (t) denotes the (unique) solution to (1.1) inL2(M−1) for
hard-spheres interactions, then, with the choiceΦ(x) = (x − 1)2,

d

dt
‖ f (t) −M‖2

L2(M−1)
=

d

dt
HΦ( f (t)|M) = −2Dhs( f (t)). (2.11)

The same occurs forDmax( f (t)). This is the reason why we are looking for a control
estimate for bothDhs( f ) andDmax( f ) with respect to theL2(M−1) norm of f . It will be
useful to derive an alternative expression for bothDmax andDhs:

Proposition 2.3. For any f ∈ D(Lhs),

Dhs( f ) =
1

4π

∫

R3
v×R3

w×S2

|q · n|
[

f (v⋆)

M(v⋆)
−

f (v)

M(v)

]2

M1(w)M(v) dw dv dn > 0.

In the same way,

Dmax( f ) =
1

4π

∫

R
3
v×R3

w×S2

|̃q · n|
[

f (v⋆)

M(v⋆)
−

f (v)

M(v)

]2

M1(w)M(v) dw dv dn > 0.

for any f ∈ L2(M−1).

Proof. The proof is a straightforward particular case of the aboveH-Theorem. Precisely,
let us fix f ∈ D(Lhs), and setf = gM then one has
∫

R
3
v

Lhs( f ) fM−1 dv =

∫

R3×R3×S2

|q · n|
2πσ

M(v)M1(w)g(v)
[
g(v⋆) − g(v)

]
dw dv dn.

Moreover, for anyϕ ∈ D(Lhs), sinceM is an equilibrium state ofQhs,
∫

R3×R3×S2

|q · n|
2πσ

M(v)M1(w)
[
ϕ(v⋆) − ϕ(v)

]
dw dv dn = 〈Lhs(M), ϕ〉L2(R,dv) = 0.

It is easy to deduce then that
∫

R3
v

Lhs( f ) fM−1 dv =

∫

R3×R3×S2

|q · n|
2πσ

M(v)M1(w)g(v⋆)
[
g(v) − g(v⋆)

]
dw dv dn.

Finally taking the mean of these two quantities leads to the desired result. The same rea-
soning also holds forDmax. �
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3. Quantitative estimates of the spectral gap.In this section, we strengthen the above
result in providing a quantitative lower bound for bothDmax( f ) andDhs( f ). The estimate
for Dmax( f ) is related to the spectral properties of the collision operatorLmax while that
of Dhs( f ) relies on a suitable comparison withDmax( f ). From now on,〈·, ·〉 denotes the
scalar product ofL2(M−1) andS(L), Sp(L) shall denote respectively the spectrum and
the point spectrum of a given (non necessarily bounded) operator inL2(M−1).

3.1. Spectral study for Maxwell molecules.We already saw that the operatorLmax :
L2(M−1)→ L2(M−1) is bounded, and it is easily seen thatLmax splits as

Lmax f = L+max f − f (v)

whereL+max is compact and self-adjoint (the proof can be done similarlyas in [1]) and we
used that the collision frequencyσmax associated to the Maxwell molecules is constant.
Moreover, since

〈Lmax f , f 〉 6 0, ∀ f ∈ L2(M−1),

the operator is easily seen to generate aC0-semigroup of contractions, and it is known that
S(Lmax) ⊂ (−∞, 0]. Finally, since Id+ Lmax = L+max is a positive, self-adjoint compact
operator, one sees that the spectrum ofLmax is made of a discrete set of eigenvalues with
finite algebraic multiplicities plus possibly{−1} in the essential spectrum, with

Sp(Lmax) ⊂ (−1, 0] (3.1)

and where the only possible accumulation point is{−1}. Clearly, sinceLmax(M) = 0,
λ0,0 := 0 is an eigenvalue ofLmax with eigenspace given bySpan(M). There are other
eigenvalues ofLmax of peculiar interest. Namely, for anyf ∈ L2(M−1), the weak formula-
tion (2.5) yields∫

R3
v

(v − u1)Lmax( f ) dv =
1

2π

∫

R3
v×R3

w×S2

|̃q · n| f (v)M1(w)
[
v⋆ − v

]
dv dw dn

= −
α(1 − β)

π

∫

R3
v

f (v) dv

∫

R3
w

M1(w) dw

∫

S2

|̃q · n|(q · n) n dn.

Using the fact that

∫

S2

|̃q · n|(q · n) n dn = π q, one has

∫

R
3
v

(v − u1)Lmax( f ) dv = −α(1 − β)

∫

R
3
v

f (v) dv

∫

R
3
w

(v − w)M1(w) dw

= −α(1 − β)

∫

R3
v

(v − u1) f (v) dv.

(3.2)

The operatorLmax being self-adjoint inL2(M−1), one obtains the identity
〈

f ,Lmax((vi − u1,i)M)
〉
= −α(1 − β)

〈
f , (vi − u1,i)M

〉
, i = 1, 2, 3, ∀ f ∈ L2(M−1).

If we denote
λ0,1 = α(1 − β) = κ ∈ (0, 1),

this means that−λ0,1 is an eigenvalue ofLmax associated to themomentum eigenvectors
(vi − u1,i)M(v) for any i = 1, 2, 3. In the same way, technical calculations show that, for
any f ∈ L2(M−1),

〈Lmax( f ) , |v − u1|2M〉 =
∫

R3

Lmax( f )|v − u1|2 dv

= −2α(1 − β)(1 − α(1 − β))〈 f , |v− u1|2M〉 +
6Θ1

m1
α2(1 − β)2〈 f ,M〉,
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and, sinceLmax is self-adjoint, setting

λ1,0 = 2α(1 − β)(1 − α(1 − β)) = 2κ(1 − κ),

one has〈Lmax(|v−u1|2M), f 〉 = −λ1,0〈|v−u1|2M, f 〉, for any f ⊥ span(M). Equivalently,

Lmax (E) = −λ1,0E,
whereE(v) =

(
|v − u1|2 − 3Θ#

m

)
M, is the energy eigenfunction, associated to−λ1,0. To

summarize, we obtained three particular eigenvaluesλ0,0, λ0,1 andλ1,0 of Lmax associated
respectively to the equilibrium, momentum and energy eigenfunctions.

To provide a full picture of the spectrum ofLmax, we adopt the strategy of Bobylev
[6] based on the application of the Fourier transform to the elastic Boltzmann equation.
Namely, we are looking forλ > 0 such that the equation

Lmax f = −λ f , f ∈ L2(M−1), f , 0, (3.3)

admits a solution. Applying the Fourier transformF to the both sides of the above equa-
tion, we are lead to:

F
[Lmax f

]
(ξ) = −λ f̂ (ξ), ξ ∈ R3,

where f̂ = F ( f ). One deduces immediately from the calculations performed in [21], that

F
[Lmax f

]
(ξ) =

1

2π

∫

S2

|ξ̃ · n|
[
f̂ (ξ+)M̂1(ξ−) − f̂ (ξ)M̂1(0)

]
dn

with ξ̃ = ξ/|ξ| and

ξ+ = ξ − 2α(1 − β)(ξ · n)n, ξ− = 2α(1 − β)(ξ · n)n

while M̂1 is the Fourier transform of the background Maxwellian distribution, given by

M̂1(ξ) = exp

{
−iu1 · ξ −

Θ1|ξ|2
2m1

}
.

The fundamental property is that even if the equilibrium distributionM does not make the
integrand of the collision operator vanish pointwise (as itis the case in the elastic case),
surprisingly it still satisfies a pointwise relation in Fourier variables as was noticed in [21].
A simple computation yields

M̂(ξ) = exp

{
−iu1 · ξ −

Θ#|ξ|2
2m

}

and thus one checks easily that,̂M(ξ+) M̂1(ξ−) = M̂(ξ), for anyn ∈ S2, and anyξ ∈ R3.

Thus, following the method of Bobylev [6], we rescalêf (ξ) = M̂(ξ)ϕ(ξ) and define the
corresponding re-scaled operatorL

Lϕ(ξ) =
1

2π

∫

S2

|ξ̃ · n| [ϕ(ξ+) − ϕ(ξ)
]

dn.

Then, Eq. (3.3) amounts to findλ > 0 such that the equationLϕ(ξ) = −λϕ(ξ) admits a
non zero solutionϕ with

f = F
−1(ϕM̂−1) ∈ L2(M−1) (3.4)

whereF−1 stands for the inverse Fourier transform. Using, as in the elastic case [6, p.
136], the symmetry properties of the operatorL together with condition (3.4), one obtains
that functions of the form

ϕn,ℓ,m(ξ) = |ξ|2n+ℓ
Yℓ,m(ξ̃), n > 0,
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Yℓ,m being a spherical harmonic (ℓ ∈N, m = −ℓ, . . . , ℓ), are eigenvectors ofL , associated
to the eigenvalues−λn,ℓ = −λn,ℓ(κ) where, according to [7],

λn,ℓ = 1 − 1

2κ(1 − κ)

∫ 1

1−2κ

s2n+ℓ+1
Pℓ

(
1 − 2κ + s2

(2 − 2κ)s

)
ds (3.5)

wherePℓ is theℓ-th Legendre polynomial,n ∈ N, ℓ ∈ N. Note that, according to (3.1),
λn,ℓ ∈ (0, 1]. Technical calculations prove that the eigenvalues we already found out,
namely,

λ0,0 = 0, λ0,1 = κ, and λ1,0 = 2κ(1 − κ),

do actually correspond to the couples(n, ℓ) = (0, 0) ; (0, 1) and(1, 0) respectively. More-
over, from the well-known Legendre polynomials property:

(ℓ + 1)Pℓ+1(x) = (2ℓ + 1)xPℓ(x) − ℓ Pℓ−1(x), x ∈ R, ℓ > 1,

one obtains the recurrence formula

λn,ℓ+1 =
2ℓ + 1

ℓ + 1

ν

1 + ν
λn,ℓ +

2ℓ + 1

(ℓ + 1)(1 + ν)
λn+1,ℓ −

ℓ

ℓ + 1
λn+1,ℓ−1, n, ℓ > 0 (3.6)

whereν = 1 − 2κ ∈ (−1, 1). Such a recurrence formula together with the relation

λn,0 = 1 − 1

n + 1

1 − ν2n+2

1 − ν2
,

allow to prove by induction overℓ ∈N that

λn+1,ℓ > λn,ℓ and λn,ℓ+1 > λn,ℓ for any n ∈N.
Consequently, one sees thatmin{λn,ℓ ; n, ℓ > 0} \ {0} = min{λ1,0;λ0,1} which means that
spectral gap ofLmax is given by

µmax = min{λ1,0;λ0,1} = min{κ; 2κ(1 − κ)}.
Remark 3.1. Note that,

λ0,1 6 λ1,0 ⇐⇒ κ 6 1/2⇐⇒ α(1 + e) 6 1.

In particular, if m1 6 m thenλ0,1 6 λ1,0. Assuming for a while that we are dealing with
species of gases with same massesm = m1, then in the true inelastic case (i.e., e < 1) one
also hasλ1,0 > λ0,1. This situation is very particular to inelastic scatteringand means
that the cooling process of the temperature happens more rapidly than the forcing of the
momentum by the background, whereas whenκ = 1/2 these two processes happen at
exactly the same speed(λ0,1 = λ1,0). Note also that, wheneverλ0,1 > λ1,0 (due to the ratio
of mass different from1), the smallest eigenvalue corresponds to the momentum relaxation
and not the energy relaxation anymore. This contrasts very much with the linearized case
(see[7]). Note also that the first eigenvalues are ordered as illustrated in Fig. 1.

The above result can be summarized in the following where thelast statement follows
from the fact thatLmax + Id is a self-adjoint compact operator ofL2(M−1).

Theorem 3.2. The operator−Lmax is a bounded self-adjoint positive operator ofL2(M−1)
whose spectrum is composed of an essential part{+1} plus the following discrete part:

Sp(−Lmax) =
{
λn,ℓ ; n, ℓ ∈N} ⊂ [0, 1)

whereλn,ℓ is given by(3.5). Moreover,λ0,0 = 0 is a simple eigenvalue ofLmax associated
to the eigenvectorM and−Lmax admits a positive spectral gap

µmax = min{λ1,0;λ0,1} = min{κ; 2κ(1 − κ)}.
Finally, there exists a Hilbert basis ofL2(M−1) made of eigenvectors of−Lmax.
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FIGURE 1. Evolution ofλ0,1 (black solid line),λ1,0 (black dotted line),
λ1,1 (grey dotted line) andλ0,2 (grey solid line) as functions ofc ∈ [0, 1]

3.2. Entropy estimate for Maxwell molecules. The result of the above section allows to
provide a quantitative version of theH-Theorem. Precisely, for anyf ∈ L2(M−1) orthog-
onal toM, using the decomposition of bothLmax f and f on the Hilbert basis ofL2(M−1)
made of eigenvectors of−Lmax (see Theorem 3.2), it is easily proved that:

Dmax( f ) := −
∫

R
3
v

Lmax( f ) fM−1 dv > µmax ‖ f ‖2
L2(M−1)

, ∀ f⊥ Span(M). (3.7)

It is well-known that such acoercivity estimateallows to obtain an exponential relax-
ation rate to equilibrium for the solution to the space homogeneous Boltzmann equation.
Namely, givenf0(v) ∈ L2(R3,M−1(v) dv) with unit mass

∫

R3

f0(v) dv = 1,

let ft be the unique solution of (1.1) with initial conditionft=0 = f0. According to the
conservation of mass, it is clear that( ft−M) is orthogonal toM (for theL2(R3

v,M−1(v) dv)
scalar product) and, within the entropy language:

d

dt
HΦ( ft|M) = −2Dmax( ft) 6 −2µmax HΦ( ft|M)

for Φ(x) = (x − 1)2 or equivalently,
(∫

R3

( ft −M)2M−1 dv

)1/2

6

(∫

R3

( f0 −M)2M−1 dv

)1/2

exp
(−µmaxt

)
, ∀t > 0.

We obtain in this way anexplicitexponential relaxation rate towards equilibrium for the
solution to the space homogeneous linear Boltzmann equation which is valid for granular
gases of Maxwell molecules and generalizes a well-known result for classical gases [11].
More interesting is the fact that the knowledge of the spectral gap ofLmax allows to recover
an explicit estimate of the spectral gap of the linear Boltzmann operator for hard-spheres
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Lhs through a suitable comparison of the entropy production functionalsDhs andDmax.
This is the subject of the following section.

3.3. Entropy estimate for hard-spheres. The goal of this subsection is to show that
the entropy production functionalDhs for hard-spheres relates to the one for Maxwell
moleculesDmax. More precisely we shall show that

Proposition 3.3. The entropy production functionalsDhs andDmax are related by:

Dhs( f ) > C⋆Dmax( f ), ∀ f ∈ D(Lhs)

for some explicit constantC⋆ depending only onα andβ.

Remark 3.4. The idea of searching for such an inequality was already present in [2],
but here the method of proof is different and simpler: one does not need any triangular
inequality between collisions, and the proof reduces to a careful study of a convolution
integral.

Remark 3.5. Note that in the hard-spheres case, the operatorLhs is unbounded. For a
careful study of its properties (compactness of the non-local part, definition of the associ-
atedC0-semigroup of contraction in the Hilbert spaceL2(M−1)) we refer to[1].

Proof. Let f ∈ D(Lhs). We setu1 = 0 in this proof without restriction since this only
amounts to a space translation.

We introduce the following parametrization, for fixedn ∈ S2, v = rn + v̄, v⋆ = r⋆n + v̄,
w = rwn + w̄, w⋆

= rw⋆n + w̄, wherer, r⋆, rw and rw⋆ are real numbers and̄v, w̄ are
orthogonal ton. Simple computations show that

rw =
r⋆

2α(1 − β)
+

(
1 − 1

2α(1 − β)

)
r,

while

rw⋆ =

(
1

2α(1 − β)
− 1 − α

α

)
r⋆ +

(
1

α
− 1

2α(1 − β)

)
r.

Therefore,rw andrw⋆ only depend onr andr⋆. Then if we denoteθ the angle betweeñq

andn, we get from Prop. 2.3, where we setg =
f

M ,

Dhs( f ) =
1

2π

∫

S2

∫

r,r⋆∈R

∫

v̄,w̄∈n⊥
|q| cosθ

[
g(r⋆n + v̄) − g(rn + v̄)

]2

M1(rwn + w̄)M(rn + v̄) dv̄ dw̄ dr dr⋆ dn

with

|q| =
(
|v̄ − w̄|2 + (2κ)−2|r⋆ − r|2

)1/2

and

cosθ =
(2κ)−1|r⋆ − r|

(|v̄ − w̄|2 + (2κ)−2|r⋆ − r|2)1/2
,

where we recall thatκ = α(1−β). We split the integral into two parts according to|r⋆−r| >
̺0 > 0 or |r⋆ − r| 6 ̺0 where̺0 is a positive parameter to be determine latter. Using the
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fact that|q| > |r⋆ − r|/2κ, one has the following estimate for the first part of the integral

1

2π

∫

S2

dn

∫

{|r⋆−r|>̺0}
dr dr⋆

∫

v̄,w̄∈n⊥
|q| cosθM(rn + v̄)M1(rwn + w̄)

[
g(r⋆n + v̄) − g(rn + v̄)

]2
dv̄ dw̄

>
(2κ)−1 ̺0

2π

∫

S2

dn

∫

{|r⋆−r|>̺0}
dr dr⋆

∫

v̄,w̄∈n⊥
cosθM(rn + v̄)M1(rwn + w̄)

[
g(r⋆n + v̄) − g(rn + v̄)

]2
dv̄ dw̄

which corresponds (up to the multiplicative factor(2κ)−1 ̺0) to the integral for|r− r⋆| > ̺0

corresponding to Maxwell molecules,i.e.,

−
∫

R3

χ{|r−r⋆|>̺0}Lhs( f ) fM−1 dv > − ̺0

2κ

∫

R3

χ{|r−r⋆|>̺0}Lmax( f ) fM−1 dv. (3.8)

Concerning now the second part of the integral (corresponding to |r⋆ − r| 6 ̺0), we use
that |q| > |v̄ − w̄| and we isolate the integration overw̄:

−
∫

R3

χ{|r−r⋆|6̺0}Lhs( f ) fM−1 dv >
1

2π

∫

S2

dn

∫

{|r⋆−r|6̺0}
dr dr⋆ |r⋆ − r|

∫

v̄∈n⊥
(2κ)−1

(
m1

2πΘ1

)−3/2


∫

w̄∈n⊥

|v̄ − w̄|M1(w̄)

(|v̄ − w̄|2 + (2κ)−2|r⋆ − r|2)1/2
dw̄




M(rn + v̄)M1(rwn)
[
g(r⋆n + v̄) − g(rn + v̄)

]2
dv̄

where we used the fact that, sincew̄ is orthogonal ton,

M1(rwn + w̄) =
(

m1

2πΘ1

)−3/2

M1(w̄)M1(rwn).

Settingξ = |r⋆ − r|/2κ, if one were able to prove that there is a constantC such that
∫

R2

|v̄ − w̄|M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄ > C

∫

R2

M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄ (3.9)

uniformly for v̄ ∈ R2 andξ ∈ [0, ̺0/2κ], then one would obtain the desired estimate (by
doing all the previous transformations backward):

−
∫

R3

χ{|r−r⋆|6̺0}Lhs( f ) fM−1 dv > −C

∫

R3

χ{|r−r⋆|6̺0}Lmax( f ) fM−1 dv.

To study the convolution integral of (3.9), we make a second splitting between|w̄− v̄| >
̺1 > 0 and|w̄ − v̄| 6 ̺1 (for some̺ 1 > 0). It gives

∫

w̄∈R2

|v̄ − w̄|M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄

>

∫

{|w̄−v̄|>̺1}

|v̄ − w̄|M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄ > ̺1

∫

{|w̄−v̄|>̺1}

M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄

> ̺1

( ∫

R2

M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄ −

∫

{|w̄−v̄|6̺1}

M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄

)
.
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Then we use the obvious estimates

∀ v̄ ∈ R2, ∀ ξ ∈ [0, ̺0/2κ],

∫

R2

M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄ >

C(κ, ̺0)

1 + |v̄|
for an explicit constantC(κ, ̺0) > 0 depending only onκ, ̺0, and

∀ v̄ ∈ R2, ∀ ξ ∈ [0, ̺0/2κ],

∫

{|w̄−v̄|6̺1}

M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄ 6 C(κ, ̺1) e−|v̄|

2

.

for an explicit constantC(κ, ̺1) > 0 going to0 as̺1 goes to0. It yields for̺1 small enough
(depending on̺ 0)

∫

{|w̄−v̄|6̺1}

M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄ 6

1

2

∫

R2

M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄. (3.10)

for any v̄ ∈ R2, ξ ∈ [0, ̺0/2κ] (we also refer to the Appendix A of this paper for a con-
struction of the parameter̺1). Consequently, for this choice of̺1 we obtain (3.9) with
C = ̺1/2, i.e.,

−
∫

R3

χ{|r−r⋆|6̺0}Lhs( f ) fM−1 dv > −̺1

2

∫

R3

χ{|r−r⋆|6̺0}Lmax( f ) fM−1 dv.

This, together with estimate (3.8), yield

Dhs( f ) > min
{ ̺0

2κ
,
̺1

2

}
Dmax( f )

which concludes the proof. �

Remark 3.6. The constantC⋆ from the proof can be optimized according to the parameter
̺0, by expliciting̺1 as a function of̺ 0. Precisely, making use of Lemma A.1 given in the
Appendix,

C⋆ = min
{ ̺0

2κ
,
̺1

2

}
>

η
√

5

with η =
√

2Θ1

m1
erf−1

(
1
2

)
where erf−1 denotes the inverse error function,erf−1( 1

2 ) ≃
0.4769.Notice that this lower bound forC⋆ does not depend on the parametersα, β.

Remark 3.7. The above Proposition provides an estimate of the spectral gap ofLhs in
L2(M−1). Precisely, we recall from[1] that the spectrum ofLhs is made of continuous
(essential) spectrum{λ ∈ R ; λ 6 −ν0} whereν0 = infv∈R3 σhs(v) > 0 and a decreasing
sequence of real eigenvalues with finite algebraic multiplicities which unique possible clus-
ter point is−ν0. Then, since0 is an eigenvalue ofLhs associated toM, one sees from the
above Proposition that the spectral gapµhs ofLhs satisfies

µhs := min
{
λ : −λ ∈ (−ν0, 0),−λ ∈ S(Lhs) \ {0}

}
> C⋆µmax >

ηmin{κ, 2κ(1 − κ)}
√

5
.

To summarize, one gets the following coercivity estimate for the Dirichlet form:

Theorem 3.8. For Q = Lhs or Lmax, one has the following:

−
∫

R3

Q( f )(v) f (v)M−1(v) dv > µ‖ f − ̺ fM‖2L2(M−1)
, ∀ f ∈ D(Q)

where,̺ f =

∫

R3

f (v) dv, and µ = µmax wheneverQ = Lmax while, for hard-spheres

interactions,i.e.,Q = Lhs, one hasµ > C⋆µmax.
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Proof. If ̺ f = 0, the proof follows directly from Proposition 3.3 and (3.7).Now, if f is a
given function with non-zero mean̺f , seth = f − ̺ fM. Then,̺ h = 0 so that

−
∫

R3

Q(h)(v)h(v)M−1(v) dv > µ‖h‖2
L2(M−1)

.

This leads to the result sinceQ(h) = Q( f ) and

∫

R3

Q( f ) dv = 0. �

Adopting now the entropy language, one obtains the following relaxation rate, which is
also new in the context of linear Boltzmann equation:

Corollary 3.9. Let f0(v) ∈ L2(R3
v,M−1(v) dv) be given and letf (t) be the unique solution

of (1.1)with initial condition f (t = 0) = f0. Then, for anyt > 0, one has the following∥∥∥ f (t) −M
∥∥∥

L2(M−1)
6 exp(−µt)

∥∥∥ f0 −M
∥∥∥

L2(M−1)
, ∀t > 0,

whereµ = µmax whenQ = Qmax while, for hard-spheres interactions,i.e., Q = Qhs, one
hasµ > C⋆µmax.

We state another corollary of the above Theorem 3.8 in which we strengthen the coerci-
vity estimate:

Corollary 3.10. For Q = Lhs or Lmax, there existscσ > 0 such that

−
∫

R3

Q( f )(v) f (v)M−1(v) dv > cσ‖( f − ̺ fM)
√
σ‖2

L2(M−1)
∀ f ∈ D(Q)

where,̺ f =

∫

R3

f (v) dv andσ(v) is the collision frequency associated toQ.

Proof. If Q = Lmax, sinceσmax(v) = 1 the estimate is nothing but Theorem 3.8. Let us
consider now the hard-spheres case,Q = Lhs. Arguing as in the proof of Theorem 3.8, it
suffices to prove the result forf⊥M, i.e., whenever̺ f = 0. We recall from [1] thatLhs

splits as
Lhs f =K f − σhs f , f ∈ D(Lhs)

whereK is a bounded (and compact) operator inL2(M−1). We then have

‖ f
√
σhs‖2L2(M−1)

=

∫

R3
v

K ( f ) fM−1 dv −
∫

R3
v

Lhs( f ) fM−1 dv

6 ‖K ‖‖ f ‖2
L2(M−1)

+Dhs( f ) 6
( ‖K ‖
µmaxC⋆

+ 1
)
Dhs( f )

where‖K ‖ stands for the norm ofK as a bounded operator onL2(M−1) and we used
Theorem 3.8. The corollary follows with

cσ =
C⋆µmax

‖K ‖ + C⋆µmax
.

�

Remark 3.11. Here again, as in Prop. 3.3, the constantcσ > 0 can be quantitatively

estimated using for instance the estimate‖K ‖ 6 2π
(1+τ)2

√
πΘ1

m1
that can be deduced without

major difficulty from the explicit expression ofK provided in[1] with τ = (1− 2κ)/κ > 0.

Remark 3.12. Recalling thatσhs behaves like(1 + |v|), the above corollary allows to
control from below the entropy production functional by theweightedL2((1+ |v|)M−1, dv)
norm. Such a weighted estimate shall be very useful for the diffusion approximation.
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4. Diffusion Approximation. We shall assume again in this whole section thatu1 = 0.
From the results of the previous section, it is possible to derive some exact convergence
results for the solution of the re-scaled linear kinetic Boltzmann equation

ε∂t fε(t, x, v)+ v · ∇x fε(t, x, v) =
1

ε
Q( fε)(t, x, v), (4.1)

with initial condition fε(x, v, 0) = f0(x, v) > 0, with (x, v) ∈ R3 × R3. Note that all the
analysis we perform here is also valid if the spatial domain denotes the three-dimensional
torusT3

x. One shall prove thatfε converges, asε → 0, toM(v)̺ where̺ = ̺(t, x) is the
solution to the (parabolic) diffusion equation:



∂t̺(t, x) = ∇x ·
(
D∇x̺(t, x)+ u1 ρ

)
, t > 0, x ∈ R3,

̺(0, x) = ̺0(x) =

∫

R3
v

f0(x, v) dv
(4.2)

where the diffusion coefficientD depends on the model we investigate (hard-sphere inter-
actions or Maxwell molecules). One shall adopt here the strategy of [12, 14]. Namely, to
prove the convergence of the solution to (4.1) towards the solution ̺ of (4.2), the idea is to
use thea priori estimate given by the production of entropy, as in [14] wherethis idea was
applied to discrete velocity models of the Boltzmann equation. Let us define the number
density and the current vector

̺ε(t, x) =

∫

R3
v

fε(t, x, v) dv, jε(t, x) =
1

ε

∫

R3
v

fε(t, x, v) v dv.

We also definehε as

hε(t, x, v) =
1

ε

(
fε(t, x, v)− ̺ε(t, x)M(v)

)
.

Integrating (4.1) with respect tox andv and using the fact that the mean ofQ( fε) is zero,
one gets the mass conservation identity

∫

R3
x×R3

v

fε(x, v, t) dx dv =

∫

R3
x×R3

v

f0(x, v) dx dv, (4.3)

which means (using the fact that the equation preserves non-negativity) that, for anyT > 0,
the sequence̺ε(x, t) is bounded inL∞(0,T; L1(R3

x)). Now, multiplying (4.1) byfεM−1 and
integrating overR3

x ×R3
v, we get

1

2

d

dt

∫

R3
x×R3

v

f 2
ε (t, x, v)M−1(v) dx dv+

1

2ε

∫

R3
x×R3

v

divx

(
v f 2
ε (t, x, v)

)
M−1(v) dx dv

− 1

ε2

∫

R3
x×R3

v

fεQ( fε)M−1 dx dv = 0. (4.4)

Now, because of the divergence form of the integrand, one sees that the second term in
(4.4) is zero while, because of Corollary 3.10,

− 1

ε2

∫

R
3
x×R3

v

fεQ( fε)M−1 dx dv

>
cσ
ε2

∫

R3
x

‖ fε(t, x, ·)− ̺ε(t, x)M‖2
L2(R3

v,σ(v)M−1(v) dv)
dx

= cσ

∫

R
3
x×R3

v

h 2
ε (t, x, v)M−1(v)σ(v) dx dv.

(4.5)
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Consequently, Eq. (4.4), together with (4.5), leads to

1

2

d

dt

∫

R
3
x×R3

v

f 2
ε (x, v, t)M−1(v) dx dv 6 −cσ

∫

R
3
x×R3

v

h2
ε(x, v, t)σ(v)M−1(v) dx dv.

Defining therefore the following Hilbert space:

H = L2(R3
x ×R3

v,M−1(v) dx dv)

endowed with its natural norm‖ · ‖H , one has
∥∥∥ fε(t)

∥∥∥2

H + 2cσ

∫ t

0

∥∥∥hε(s)
√
σ
∥∥∥2

H ds 6
∥∥∥ f0

∥∥∥2

H , ∀t > 0. (4.6)

We obtain the followinga priori bounds:

Proposition 4.1. For anyε > 0, let fε(t) denotes the unique solution to(4.1)with f0 ∈ H ,
f0 > 0. Then, for any0 6 T < ∞

1. The sequence( fε)ε is bounded inL∞ (0,T ; H ) ,
2. the sequence(

√
σhε)ε is bounded inL2 (0,T;H ) ,

3. the density sequence(̺ε)ε is bounded inL∞(0,T ; L1(R3
x) ∩ L2(R3

x)),

4. the current sequence( jε)ε is bounded in
[
L2((0,T)×R3

x)
]3
.

Proof. The first two points are direct consequences of (4.6) with

sup
ε>0

∥∥∥ fε
∥∥∥

L∞(0,T ;H )
6

∥∥∥ f0
∥∥∥

x,v
, sup

ε>0

∥∥∥√σhε
∥∥∥

L2(0,T ;H )
6 (2cσ)

−1/2
∥∥∥ f0

∥∥∥
x,v
.

Now, Eq. (4.3) proves that the number density sequence(̺ε)ε is bounded inL∞(0,T ; L1(R3
x))

and, according to Cauchy-Schwarz inequality,

0 6 ̺ε(t, x) 6
( ∫

R3
v

f 2
ε (t, x, v)M−1(v) dv

)1/2

we see from point(1) that (̺ε)ε is also bounded inL∞(0,T ; L2(R3
x)). Finally, sincefε =

̺εM + εhε and
∫
R

3
v

vM(v) dv = 0, one has

∫ T

0

dt

∫

R
3
x

∣∣∣ jε(t, x)
∣∣∣2 dx =

∫ T

0

dt

∫

R
3
x

dx

∣∣∣∣∣∣

∫

R
3
v

vhε(t, x, v) dv

∣∣∣∣∣∣
2

while, from Cauchy-Schwarz inequality and the fact thatσ is bounded from below
∣∣∣∣∣∣

∫

R
3
v

vhε(t, x, v) dv

∣∣∣∣∣∣
2

6

( ∫

R
3
v

|v|2M(v) dv
)( ∫

R
3
v

h 2
εM−1 dv

)

so that ∫ T

0

dt

∫

R3
x

∣∣∣ jε(t, x)
∣∣∣2 dx 6

3Θ#

m

∫ T

0

‖hε(t)‖2x,v dt

and the conclusion follows from point(2). �

Remark 4.2. Since fε = εhε + ̺εM, noticing that
∫
R3

v
σ(v)M(v) dv < ∞, one deduces

from the above points (2) and (3) and that the sequence(
√
σ fε)ε is bounded inL2 (0,T;H ) .

For anyT > 0, we define

ΩT = (0,T) ×R3
v ×R3

x and dµT = dx dv dt.

The bounds provided by Prop. 4.1 allows to assume that, up to asubsequence,

fε ⇀ f in L2(ΩT ; σM−1 dµT), hε ⇀ h in L2(ΩT ; σM−1 dµT);
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̺ε ⇀ ̺ in L2((0,T)×R3
x), jε ⇀ j in

[
L2((0,T)×R3

x)
]3
.

LetΨ ∈ L2(ΩT, σ−1MdµT) =
[
L2(ΩT, σM−1 dµT)

]⋆
be given. Sinceσ = σmax is constant

while σ = σhs behaves asymptotically like(1 + |v|), one easily has from Cauchy-Schwarz

ϕ(t, x) =

∫

R3
v

M(v)Ψ(t, x, v) dv ∈ L2((0,T)×R3
x),

and therefore

lim
ε→0

∫ T

0

dt

∫

R3
x

̺ε(t, x)ϕ(t, x) dx =

∫ T

0

dt

∫

R3
x

̺(t, x)ϕ(t, x) dx.

Thus, writing fε = ̺εM + εhε, one checks that

lim
ε→0

∫

ΩT

fεΨdµT =

∫ T

0

dt

∫

R3
x

̺(t, x)ϕ(t, x) dx =

∫

ΩT

̺MΨdµT,

i.e., fε ⇀ ̺M in L2(ΩT , σM−1 dµT). In particular,f (t, x, v) = ̺(t, x)M(v).Moreover,

lim
ε→0

∫

ΩT

hεΨdµT =

∫

ΩT

hΨdµT. (4.7)

for anyΨ = Ψ(t, x, v) ∈ L2(ΩT, σ−1MdµT). Now, choosingΨ independent ofv, one sees
that ∫

R
3
v

h(t, x, v) dv = 0, ∀t > 0, x ∈ R3
x.

Finally, using in (4.7) a test functionΨ(t, x, v) = vϕ(t, x) with ϕ ∈ L2((0,T) × R3
x), we

deduces from the weak convergence ofjε to j that

j(t, x) =

∫

R
3
v

vh(t, x, v) dv.

Finally, integrating equation (4.1) overR3
v leads to the continuity equation

∂t̺ε(t, x) + divx jε(t, x) = 0, ∀ε > 0. (4.8)

We deduce at the limit that

∂t̺(t, x)+ divx j(t, x) = 0, t > 0, x ∈ T3
x (4.9)

in thedistributional sense. We summarize these first results in the following:

Proposition 4.3. Under the assumptions of Proposition 4.1, for anyT > 0, up to a subse-
quence,

i) (̺ε) converges weakly inL2((0,T)×R3
x) to some̺ ;

ii) (hε) converges weakly inL2(ΩT, σM−1 dµT) to some functionh with∫

R3
v

h(t, x, v) dv = 0;

iii) ( fε) converges weakly to̺M in L2(ΩT, σM−1 dµT);

iv) ( jε) converges weakly toj(t, x) =

∫

R3
v

vh(t, x, v) dv in
[
L2((0,T)×R3

x)
]3
.

where̺ and j are related by(4.9).

The problem of the diffusion approximation is then reduced to the one of finding a
suitable relation, similar to theclassical Fick’s law, linking the currentj(t, x) to the gradient
of the density̺ (t, x). Such a Fick’s law (and the corresponding coefficient) shalldepend
heavily on the collision kernel.
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4.1. Maxwell molecules. When dealing with Maxwell molecules,i.e., wheneverQ =
Lmax, it is possible to obtain an explicit expression for the diffusion coefficient. Precisely,
multiplying equation (4.1) byv and integrating overR3

v gives

ε2 ∂t jε(t, x) +

(∫

R3
v

(v ⊗ v) : ∇x fε(t, x, v) dv

)
=

1

ε

∫

R3
v

Lmax( fε) v dv (4.10)

Now, as we already saw it (see (3.2)):∫

R3
v

Lmax( fε) v dv = −α(1 − β)ε jε = −λ0,1ε jε.

Then, recalling thatfε(t, x, v) = ̺ε(t, x)M(v)+ εhε(t, x, v), Eq. (4.10) becomes

ε2 ∂t jε(t, x)+A : ∇x̺ε(t, x)+ ε

(∫

R
3
v

(v ⊗ v) : ∇xhε(t, x, v) dv

)
= −λ0,1 jε (4.11)

whereA is the matrix of directional temperatures associated to thedistributionM:

A =

∫

R3
v

(v ⊗ v)M(v) dv =
Θ#

m
Id = diag

(
Θ#

m
;
Θ#

m
;
Θ#

m

)
.

One may rewrite (4.11) as

Θ#

m
∇x̺ε(t, x) + λ0,1 jε(t, x) = −ε2 ∂t jε(t, x)− ε

(∫

R3
v

(v ⊗ v) : ∇xhε(t, x, v) dv

)
.

Choosing a test-functionψ ∈ C∞c ((0,T)×R3
x), the above equation reads in its distributional

form:

Θ#

m

∫ T

0

dt

∫

R3
x

∇xψ(t, x)̺ε(t, x) dx− λ0,1

∫ T

0

dt

∫

R3
x

ψ(t, x) jε(t, x) dt =

− ε2

∫ T

0

dt

∫

R3
x

∂tψ(t, x) jε(t, x) dx− ε
∫

ΩT

hε(t, x, v)(v⊗ v) : ∇xψ(t, x) dµT

and, by virtue of the bounds in Prop. 4.1, the right-hand sideconverges to zero asε → 0
and one gets at the limit:

j(t, x) = − Θ
#

mλ0,1
∇x̺(t, x) (4.12)

in the distributional sense.The above formula provides the so-called Fick’s law for Maxwell’s
molecules. One deduces the following Theorem:

Theorem 4.4. Let f0 ∈ H and, for anyε > 0, let fε(t, x, v) denotes the solution to(4.1).
Then, for anyT > 0, up to a sequence,fε converges strongly inL2

loc
(ΩT ; M−1 dµT) to-

wards̺(t, x)M(v), where̺(t, x) is the solution to the diffusion equation

∂t̺ = ∇x ·
(
Θ#

mλ0,1
∇x̺(t, x)

)
, ̺(t = 0, x) =

∫

R3
v

f0(x, v) dv. (4.13)

Proof. We already proved thatfε converges weakly to̺M in L2((0,T) ; H ). To prove the
strong convergence, since

∫ T

0

‖ fε(t) − ̺ε(t, x)M‖2H = ε
2

∫ T

0

‖hε(t)‖2H → 0

it suffices to prove that̺εM converges strongly to̺M in H . This is equivalent to prove
that̺ε converges strongly to̺ in L2(0,T ; L2

loc
(R3

x)). This is done in the spirit of [14] and
[12] by using a compensated-compactness argument. Precisely, let us define the following
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vectors ofR3
x×R+t : Uε = ( jε, ̺ε) andVε = (0, ̺ε). From (4.8), one sees thatdivx,tUε = 0,

in particular(divx,tUε)ε is bounded inL2(R3
x × R+t ). Now, from (4.11), one sees that

A : ∇x̺ε is a bounded family inL2((0,T)×R3
x). SinceA =

Θ#

m Id, it is clear that

curl Vε =

(
0 −T∇x̺ε
∇x̺ε 0

)

is bounded in[L2
loc

((0,T)×R3
x)]4×4. Now, from the div-curl Lemma [17, 22],Uε ·Vε = ̺2

ε

converges to̺ 2 inD′((0,T)×R3
x).

Moreover, we already saw that̺ε is bounded inL∞(0,T ; L2(R3
x)) from which we deduce

the strong convergence of̺ε to ̺ in L2((0,T) ; L2
loc

(R3
x)). �

Remark 4.5. As already pointed out in[21], the dependence of the diffusivityDmax :=
Θ#/mλ0,1 on the inelasticity parameterβ shows that inelasticity tends to slow down the
diffusive process.

4.2. Hard spheres. When dealing with hard-spheres interactions, it appears difficult to
obtain an explicit expression of the diffusion coefficient.Nevertheless, its existence can be
deduced from Theorem 3.8. Indeed, a direct consequence of the Fredholm Alternative is
the following:

Proposition 4.6. For any i = 1, 2, 3, the equation

Lhs(χi) = viM(v), v ∈ R3

has a unique solutionχi ∈ L2(σ(v)M−1(v) dv), such that〈χi,M〉 =
∫

R
3
v

χi(v)dv = 0 for

any i = 1, 2, 3.

Remark 4.7. Note that the above Proposition holds true only because we assumed the bulk
velocityu1 to be zero,i.e.,

∫
R3

v
vMdv = 0. If one deals with a non-zero bulk velocityu1,

then if one denotesa(v) = v−u1, χi then solvesLhs(χi) = ai(v)M(v) (see also(4.15)), and
moreover the limit diffusion equation includes in this casean additional drift termu1 ·∇xρ,
see Eq.(4.2).

Then, settingχ = (χ1, χ2, χ2) one defines the diffusion matrix:

D := −
∫

R3
v

v ⊗ χ(v) dv ∈ R3×3.

Adapting the result of [20], the diffusion matrix is given byD = diag(Dhs,Dhs,Dhs) for
somepositive constantDhs > 0, namely,

Dhs = −
∫

R
3
v

v1χ1(v) dv = −
∫

R
3
v

Lhs(χ1)χ1M−1 dv > µ‖χ1‖2L2(M−1)
.

Remark 4.8. Note that, when dealing with Maxwell molecules, for anyi = 1, 2, 3, the
functionχi appearing in Proposition 4.6 is given byχi = − 1

λ0,1
viM and we find again the

expression of the diffusion matrixD = Θ#

mλ0,1
Id.

Recall that, for anyT > 0, we definedΩT = (0,T)×R3
v×R3

x anddµT = dx dv dt.Then,
for anyφ ∈ L∞(R3

v) and anyψ ∈ C∞c ((0,T) × R3
x), multiplying Eq. (4.1) byφ(v)ψ(t, x)
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and integrating overΩT one has
∫

ΩT

̺ε(t, x)M(v)
(
v · ∇xψ(t, x)

)
φ(v) dµT +

∫

ΩT

Lhs(hε)φ(v)ψ(t, x) dµT =

ε
( ∫

ΩT

φ fε∂tψ dµT +

∫

ΩT

hε(v · ∇xψ)φdµT

)
. (4.14)

In particular, by virtue of Propositions 4.1 and 4.3, one sees that

lim
ε→0

( ∫

ΩT

M(v)̺ε(t, x)
(
v · ∇xψ(t, x)

)
φ(v) dµT +

∫

ΩT

Lhs(hε)φ(v)ψ(t, x) dµT

)
= 0.

Now, one deduces easily as in [12] that
∫

ΩT

̺(t, x)
(
v · ∇xψ(t, x)

)M(v)φ(v) dµT = −
∫

ΩT

Lhs(h)φ(v)ψ(t, x) dµT, (4.15)

which means that, in the distributional sense,

divx(vM(v)̺(t, x)) = Lhs(h), t > 0, x ∈ R3
x.

Sinceh is of zeroR3
v–average, Proposition 4.6 asserts that

h(t, x, v) = −χ(v) · ∇x̺(t, x)

and Proposition 4.3(iv) leads to

j(t, x) =

∫

R3
v

vh(t, x, v) dv = D : ∇x̺(t, x).

We then obtain the following:

Theorem 4.9.Let0 6 f0(x, v) ∈ L2(R3
x×R3

v,M−1 dv) be given and letfε be the associated
sequence of solution to(4.1) whereQ = Qhs. Then, up to a subsequence,fε converges
strongly inL2

loc
(ΩT,M−1 dµT) to ̺(t, x)M where̺ > 0 is the solution to the parabolic

diffusion equation(4.2)where the diffusion coefficientDhs is given by

Dhs := −
∫

R3
v

v1χ1(v) dv ∈ R3×3

with χ1 defined in Prop. 4.6.

Proof. We already proved thatfε converges weakly to̺M in L2((0,T),H ) and the strategy
to prove the strong convergence is that used in Theorem 4.4. Precisely, we define again
Uε = ( jε, ̺ε) andVε = (0, ̺ε) and observes that again(divx,tUε)ε is bounded inL2(R3

x ×
R+t ). Now, from (4.14), withφ(v) =

v

|v| and settingΓ =

∫

R3
v

v ⊗ v

|v| M(v) dv, one sees that

̺ε satisfies:

Γ : ∇x̺ε =

∫

R3
v

Lhs(hε)
v

|v| dv − ε
(
∂t

∫

R3
v

v

|v| fε dv + divx

[∫

R3
v

v ⊗ v

|v| hε dv

] )

so thatΓ : ∇x̺ε lies in a bounded subset ofL2
loc

((0,T) × R3
x). SinceΓ is invertible, one

proceeds as in the proof of Theorem 4.4 that̺ε converges strongly to̺ in L2
loc

((0,T) ×
R3

x). �

As we saw it, the diffusivityDhs associated to hard-spheres interactions is not explicitly
computable, the solutionχ not being explicit. It is however possible to obtain a quantitative
estimate ofDhs in terms of known quantities (i.e., that do not involveχ1):
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Proposition 4.10. One has the following estimate:

Θ#

chsm
6 Dhs 6

Θ#

λ0,1C⋆m

whereC⋆ is the constant provided by Prop. 3.3 andchs = −
〈Lhs(v1M), v1M〉
‖v1M‖2L2(M−1)

> 0.

Proof. We begin with the lower bound ofDhs. For anys ∈ R, let

P(s) = 〈Lhs(χ1 + sv1M), χ1 + sv1M〉.
SinceLhs is negative, one hasP(s) 6 0 for anys ∈ R. Moreover,

P(s) = 〈Lhs(χ1), χ1〉 + 2s〈Lhs(χ1), v1M〉 + s2〈Lhs(v1M), v1M〉
= −Dhs + 2s‖v1M‖2L2(M−1)

+ s2〈Lhs(v1M), v1M〉.
We get therefore that

Dhs > 2s‖v1M‖2L2(M−1)
+ s2〈Lhs(v1M), v1M〉, ∀s ∈ R.

With the definition ofchs (note thatchs > 0 sinceLhs is negative andv1M⊥M), we get

Dhs >
(
2s − chss2

)
‖v1M‖2L2(M−1)

, ∀s ∈ R.
Optimizing with respect tos, one sees that

Dhs >
1

chs
‖v1M‖2L2(M−1)

=
Θ#

chsm
.

To get an upper bound forDhs, we use the fact that, thanks to (3.2),

Dhs = −〈χ1, v1M〉 = λ−1
0,1〈Lmax(χ1), v1M〉.

Now, as above, for anys ∈ R, defineQ(s) = 〈Lmax(sχ1 + v1M), sχ1 + v1M〉. Here again,
Q(s) 6 0 for anys ∈ R and

Q(s) = s2〈Lmax(χ1), χ1〉 + 2s〈Lmax(χ1), v1M〉 + 〈Lmax(v1M), v1M〉
= s2〈Lmax(χ1), χ1〉 + 2λ0,1Dhss − λ0,1‖v1M‖2L2(M−1)

.

Now, according to Prop. 3.3,〈Lmax(χ1), χ1〉 > 1
C⋆ 〈Lhs(χ1), χ1〉 = −Dhs/C⋆ so that

0 > Q(s) > −Dhs

C⋆
s2
+ 2λ0,1Dhss − λ0,1‖v1M‖2L2(M−1)

, ∀s ∈ R.

Optimizing the right-hand side with respect tos ∈ R, we get

λ0,1‖v1M‖2L2(M−1)
> λ2

0,1C⋆Dhs

which gives the desired upper bound. �

Remark 4.11. It is possible to provide some upper bound forchs. Namely, using the fact
that there existsν1 > 0 such thatσ(v) 6 ν1(1 + |v|), it is easy to see that

chs 6
1

‖v1M‖2L2(M−1)

∫

R3

σ(v)2v2
1M(v) dv 6

mν1

Θ#

∫

R3

(1 + |v|)4M(v) dv.

This very rough estimate could certainly be strengthened. Note also that the upper bound
for Dhs reads as

Dhs 6
τ(1 − α)(1 − β)

α(1 − β)(1− α(1 − β))

√
m1Θ1

m
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whereτ =

√
5

erf−1(1/2)
√

2
≃ 3.3154 is a numerical constant and we used the lower bound

of C⋆ provided by Remark 3.6.

Appendix A. We provide here a constructive proof of the coefficient̺1 appearing in
Proposition 3.3 with the aim of finding quantitative estimates for the coefficientC⋆ in
Prop. 3.3. Namely, recalling thatκ = α(1 − β), one has

Lemma A.1. Given̺0 > 0, there exists̺ 1 > 0 such that
∫

{|w̄−v̄|6̺1}

M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄ 6

1

2

∫

R2

M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄. (A.1)

for any v̄ ∈ R2, ξ ∈ [0, ̺0/2κ]. Moreover, settingη =
√

2Θ1

m1
erf−1( 1

2 ), whereerf−1 is the

inverse error function, one has

̺1 >


η2 −

̺2
0

4κ2




1/2

, ∀0 < ̺0 < 2κη.

Proof. We assume without loss of generality thatu1 = 0. Let ̺0 > 0 be given. Let us fix
v̄ = (v̄1, v̄2) ∈ R2 andξ ∈ [0, ̺0/2κ]. Using polar coordinates, it is clear that

(
m1

2πΘ1

)−3/2
∫

{|w̄−v̄|6̺1}

M1(w̄)

(|v̄ − w̄|2 + ξ2)1/2
dw̄ =

exp(−a|v̄|2)

∫ ̺1

0

r exp(−ar2)
√

r2 + ξ2
dr

∫ 2π

0

exp
(
− 2ar(v1 cosθ + v2 sinθ)

)
dθ

wherea = m1/(2Θ1). Therefore, a sufficient condition (independent ofv̄) for (A.1) to hold
is that ∫ ̺1

0

r exp(−ar2)
√

r2 + ξ2
dr 6

1

2

∫ ∞

0

r exp(−ar2)
√

r2 + ξ2
dr, ∀ξ ∈ [0, ̺0/2κ].

It is not difficult to see that this is equivalent to

erf
(√

a(̺2
1
+ ξ2)

)
− erf(

√
aξ) 6

1

2
− 1

2
erf(
√

aξ), ∀ξ ∈ [0, ̺0/2κ]

whereerf is the error functionerf(x) = 2√
π

∫ x

0

exp(−t2) dt, x > 0. This allows to define a

function:
z : ξ ∈ R+ 7→ z(ξ)

wherez(ξ) is the nonnegative solution to the identity
√

a(z2 + ξ2) = erf−1
(

1

2
+

1

2
erf(
√

aξ)
)

(A.2)

whereerf−1 is the inverse error function. Clearly the Lemma is proven provided

̺1 := min{z(ξ), ξ ∈ [0, ̺0/2κ]} > 0.

Note that, according to (A.2), the functionz(·) is continuously differentiable and there is
someζ ∈ [0, ̺0/2κ] such thatmin{z(ξ), ξ ∈ [0, ̺0/2κ]} = z(ζ). In particularz′(ζ) = 0
and one checks, thanks to (A.2), that

z′(ξ) =
1

2

√
z2 + ξ2 exp(az2) − ξ, ∀ξ > 0.
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In particular,z′(ζ) = 0 is equivalent to

4ζ2 exp(−az2(ζ)) = z2(ζ) + ζ2, (A.3)

and one sees thatz2(ζ) = 0 should implyζ = 0 whereas, according to (A.2),z(0) , 0.
Consequently, all the local extrema ofz are positive. Therefore,

̺1 = z(ζ) = min{z(ξ), 0 6 ξ 6 ̺0/2κ} > 0

which achieves to prove that (A.1) holds true for some̺1 > 0. It remains now to provide
some estimate for̺1. Precisely, defining

η =
1√
a

erf−1
(

1

2

)
,

we see from (A.2) thatz2(ξ) + ξ2
> η2, for any ξ > 0, so that̺2

1
> η2 − ̺2

0

4κ2 for any
̺0 ∈ (0, 2κη), which achieves to prove the lemma. �

Remark A.1. According to the above Lemma, with the choice of̺0 =
2κη√

5
, one obtains

thatmin
(
̺0

2κ ,
̺1

2

)
>

η√
5
.
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