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ABSTRACT. We consider the linear dissipative Boltzmann equatiorcridgiag inelastic
interactions of particles with a fixed background. For thepified model of Maxwell
molecules first, we give a complete spectral analysis, addaefrom it the optimal rate
of exponential convergence to equilibrium. Moreover werstite convergence to the heat
equation in the diffusive limit and compute explicitely ttiéusivity. Then for the physical
model of hard spheres we use a suitable entropy functiomakffich we prove explicit
inequality between the relative entropy and the productibentropy to get exponential
convergence to equilibrium with explicit rate. The prooba&sed on inequalities between
the entropy production functional for hard spheres and Malxmolecules. Mathematical
proof of the convergence to some heat equation in the diffuginit is also given. From
the last two points we deduce the first explicit estimateshendiffusive coefficient in the
Fick’s law for (inelastic hard-spheres) dissipative gases

1. Introduction. The linear Boltzmann equation fgranular particlesmodels the dy-
namics of dilute particles (test particles with negligibiatual interactions) immersed in a
fluid at thermal equilibrium that undergoelastic collisionscharacterized by the fact that
the total kinetic energy of the system is dissipated durivljsion. Such an equation in-
troduced in[[I6"211-15] provides an efficient descriptiontaf dynamics of a mixture of
impurities in a gad[13,10]. Assuming the fluid at thermalillogium and neglecting the
mutual interactions of the particles, the evolution of thigrébution of the particles phase
is modelled by the linear Boltzmann equation which reads

If +0-Vof = Q) (1.1)

with suitable initial conditionf(x,v,0) = fy(x,v), (x,v) € R3 x R3. Here above, the
collision operator(-) is alinear scattering operatogiven by

Q(f) = B(f, My),
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where$(-, -) denotes the usual quadratic Boltzmann collision operatogfanular gases
(cf. [9] for instance) and\1; stands for the distribution function of the host fluid whish i
assumed to be a given Maxwellian with bulk veloaityand temperatur®, (see Section 2
for details). Notice that we shall deal in this paper with¢b#ision operato® correspond-
ing to hard-spheres interactionas well as with the one associatedMaxwell molecules
interactions The inelasticity is modeled by@nstant normal restitution coefficientThe
main goals and results of this paper are the following:

(1) First, we explicit the exponential rate of convergeroeards equilibrium for the so-
lution to the space-homogeneous versioofl(1.1) (for badixwellian molecules and
hard-spheres interactiongjrough a quantitative estimate of the spectral gap @f
It is computed in an explicit way for Maxwell molecules, arglimated in an explicit
way for hard-spheres, see Theorem 3.8 (together with itel@oy[39 for its conse-
guence on the asymptotic behavior of space-homogeneautoss), whereimax is
defined in Theoredi:3.2, and the const@hts detailed in Remark=3.6.

(2) Second, we investigate the problem of tlifusion approximation for (L1). Pre-
cisely, we show that the macroscopic limitof Eq. [I1) in the diffusive scaling
is the solution to some (parabolic) heat equation (see Ritpo[Z3 together with
Theorem4$4]4 an4.9)When dealing with Maxwell molecules interactions, the
diffusivity of this heat equation can then be computed exilly (see Theoreri 4.4
together with the computation of Remdrkl4.5 for the diffitglv This is no more
the case for the equation corresponding to hard-spheregnatctions but we provide
some new quantitative estimates on(ee Theoref 4.9 together with the estimate of
Propositiod’4.710).

Concerning point (1), it is known froni [16,R,115] that thedar collision operator
admits a unique steady state given by a (normalized) Majamedlistribution functionM
with bulk velocityu; and temperatur®” < ®;. Moreover, thanks to the spectral analysis
of Q performed in[[l] (in the hard-spheres case), the soluticéospace-homogeneous
version of [TL) is known to converge exponentially (in sqmeetinentl.? norm) towards
this equilibriumM as times goes to infinity. This exponential convergencdtesbased
upon the existence of a positive spectral gap for the colligiperator@ and relies on
compactness arguments, via Weyl's Theor8mcause of this non constructive approach,
at least for hard-spheres interactions, no explicit estiteaon the relaxation rate were
available by now It is one of the objectives of this paper to fill this blankisltvell-known
that the kinetic description of gases through the Boltzmaauation is relevanmnly on
some suitable time scalBl, [11]. Providing explicit estimates of the relaxationeré the
only way to make sure that the time scale for the equilibraimcess is smaller than the
one on which the kinetic modeling is relevant. Another mation to look for an explicit
relaxation rate relies more on methodological aspects. gaatness methods do not rely
on any physical argument and it seems to us more natural kdfdo@ method which relies
as much as possible on physical mechanisms, e.g. dissigdtentropy.

Precisely, the strategy we adopt to treat the above poins(iqsed upon an explicit
estimate of the spectral gap@f For Maxwell molecules interactions, we use the Fourier-
based approach introduced by BobylElV [6] for the study oflithearized (elastic) Boltz-
mann equation and then used for the study of the spectrunedihtbarizedinelastic col-
lision operator in[[7], and we provide an explicit descptiof the whole spectrum of this
linear scatteringcollision operator . Then, to treat the case of hard-spheategactions,
our method is based upon teatropy-entropy-production methoHrecisely, we show that
the entropy production functional (naturally associatetheL>(M™') norm) correspond-
ing to the hard-spheres model can be bounded from below (aprt® explicit constant)
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by the one associated to the Maxwell molecules model (PitpoB.3). Note that such
a comparison between entropy production rates for hardrsgtand Maxwell molecules
interactions is inspired by the approach [of [2] which deaithwhe linearized (elastic)
Boltzmann equation. In the present case, the method of psabfferent and simpler, be-
ing based upon the careful study of a convolution integralchSan entropy production
estimate allows us to prove, via a suitable coercivity esténfQ (Theoreni318), that any
space-homogenous solution [g{1.1) converges expongritalards equilibrium with an

explicit rate that depends on the model under investigation

Concerning now point (2), various attempts to derive hyginasnic equations from the
dissipative nonlinear Boltzmann equation exist in theditere, mostly based upon suitable
moment closure methods23,[4, 5] or on the study of the limedrversion of the Boltz-
mann equation around self-similar solutions (homogeneoofing state)[[3[18] in some
weak inelastic regime. Dealing with the linear Boltzmanuaipn [1.1), hydrodynamic
models describing the evolution of the momentum and the ¢gatpre of the gas have been
obtained in[[1D] as a closed setdi§sipative Euler equatiorfsr some pseudo-Maxwellian
approximation ofQ. Similar results have been obtained[inl[13] where numentzthods
are proposed for the resolution of both the kinetic and hggnamic models. The workl[4]
proposes two closure methods, based upon a maximum entrogypte, of the moment
equations for the density, macroscopic velocity and teatpee. These closure methods
lead to a single diffusion equation for the hydrodynamieaiable. In the present paper, we
shall discuss the diffusion approximation of the lineartBwlann equatior(1l.1) with the
main objective of providing @igorous derivation of the Fick's law for dissipative gases
and an estimate on the diffusive coefficienRecall that the diffusion approximation for
the linear Boltzmann equation consists in looking for ttmeitj as the small parameter
goes td), of the solution to the following re-scaled kinetic equatio

€0ife(t,x,0) + v Vife(t,x,0) = %Q(fg)(t, x,0), 1.2)

with suitable initial condition. We consider indeed here Navier-Stokes scalingnamely,
we assume the mean free path to be a small parameter < 1 and, at the same time,
we rescale time as— t/¢ in order to see emerging the diffusive hydrodynamical regim
(and not the Euler hydrodynamical description, which wdidda trivial transport equation
in our case). Performing a formal Hilbert asymptotic expam®f the solution allows us
to expect the solutiorf. to converges towards a limjt with Q(f) = 0. Therefore, the
expected limit off; is of the formf(t, x, v) = o(t, x) M(v), and the diffusion approximation
problem consists in expressipg, x) as the solution to some suitable diffusion equation.
Actually, standard approach consists in using the cortjimalation

dro(t, x) + divyj(t, x) = 0,

between the density and the current vectgtt, x) together with a suitablBick’s law that
links the curreny to the gradient op:

](t/ X) =-D V‘C@(t/ X)

for some suitable diffusion coefficient (diffusivity) > 0 which depends on the kind of
interactions we are dealing with. For Maxwell moleculegiattions, the expression of
the diffusivity can be made explicit while this is no more ttase when dealing with hard-
spheres model. The method we adopt for the proof of the difulimit follows very
closely the work of P. Degond, T. Goudon and F. PoupAud [12pLfh more general than
ours since it deals with models without detailed balance the/study of[[1R] is restricted
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to the case of a collision operator for which the collisicegfuency is controlled from above
in a way that excludes the case of physical hard-spherasatiens (recall that, for hard-
spheres, the collision frequency behaves asymptoticély(ll + [0|) [A]). Actually, the
analysis of [TR] can be make valid under the only hypothéwis the coercivity estimate
obtained in Theorefi:3.8 (and strenghten in Thedren 3.1@sholie. Precisely, such a
coercivity estimate of allows to obtain satisfactory priori boundsfor the solution to the
re-scaled equatiofi{d.2). We are then able to prove the waralecgence of the density
and currentj, of the solutionf, towards suitable limit density and limit currentj. It is
also possible, via compensated-compactness argumemgXh[17 [22] to prove strong
convergence result il* norm.

The organization of the paper is as follows. In Sedfibn 2 ves@nt the models we shall
deal with as well as some related known results we shall ugeisequel. In Sectidd 3 we
perform the computations of the spectrum in the Maxwell rogles case and then prove
the crucial entropy production estimates in the hard-sghease (from which we deduces
the explicit convergence rate to equilibrium for the sphoerogenous version dfi (1.1)).
Sectio} is dealing with the above pof}. We first provea priori estimates valid for both
models of hard-spheres and Maxwell molecules and based thpatoercivity estimates
obtained in Sectiofl3. Then, we deal separately with thescatéaxwell molecules
and hard-spheres proving for both models the convergem@rds suitable macroscopic
equations, providing for Maxwell molecules an explicit esgsion of the diffusivity, and
for hard-spheres explicit estimates on it.

2. Preliminaries.

2.1. The model. As explained in the introduction, we shall deal withireear scattering
operator@ given by

o [ B s e M @) - 0 M) dodn @)

21A R3%S

Qf) =

whereA is the mean free patly, = v — w is the relative velocityp, andw, are the pre-
collisional velocities which result, respectivelydrandw after collision. The main feature
of the binary dissipative collisionss that part of the normal relative velocity is lost in the
interaction, so that

@ —w*) -n=—e(w—w)-n, (2.2)

wheren € §? is the unit vector in the direction of impact afd< e < 1 is the so-called
normal restitution coefficient. Generally, such a coeffitighould depend o(v, w) but,
for simplicity, we shall only deal with @onstant normal restitution coefficient. The
collision kernelB(g, n) depends on the microscopic interaction (see below) whdaehm
Js corresponds to the product of the Jacobian of the transtwm@,, w.) — (v, w) with
the ratio of the lengths of the collision cylindef$ [9]. Nabat in such a scattering model,
the microscopic masses of the dilute partickesind that of the host particles; can be
different. We will assume throughout this paper that thériistion function M; of the
host fluid is a given normalized Maxwellian function:

3/2 RY)
”“”=(é$h) “p{Jm%®fﬂ}’

whereu; € R® is the given bulk velocity an®; > 0 is the given effective temperature
of the host fluid. For particles of massescolliding inelastically with particles of mass

veR®, (2.3)
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my, the restitution coefficient being constant, the expressidhe pre-collisional velocities
(v«, wy) are given by[[P21]

1- 1-—
1_2[;(,1.”)”, w*=w+2(1—a)l_2ﬁﬁ

whereg = v — w, « is the mass ratio angldenotes the inelasticity parameter

Ve =0 —2u (qg-n)n; (2.4)

m 1-e¢
a= €(0,1), Bp=—2¢€][0,1/2).
s €O, p=—cl0,1/2)
We shall investigate in this paper several collision operatorresponding to various inter-
actions collision kernels. Namely, we will deal with

e the linear Boltzmann operator fhard-sphere interaction& = Qs for which

1
B(q/ Tl) = Bhs(q/ n) = |q : Tll, and ]Bhs =: ]hS = 3_2’

e the scattering operat® = Qnax corresponding to thBlaxwell molecules approxi-
mationfor which

1 |o—w|

B(q,1) = Bmax(q,n) = W nl, 7= q/lql, and JBuax = Jmax = e—zm

It will be sometimes convenient to express the collisionrafme @ in the following weak
form:

<P, Qf) >= L B(g, n) f(0) My (w) [ (v*) — Y (v)] dvdw dn (2.5)

2ntA R3xR3xS2
for any regulany, where(v*, w*) denote the post-collisional velocities given by
v* =v-2a(1-B)(q-n)n, w*=w+2(1-a)1-PB)(q-n)n. (2.6)

In particular, one sees that the dissipative feature of @smwpic collision is measured, at
the macroscopic level, only through the parameter:

K=0((1—ﬁ)=%(1+e)€(0,1)

appearing in the expressionof. Accordingly, the macroscopic properties@fare those
of the classical linear Boltzmann gas whenexet 1/2 (which is equivalent ta* = v).
It can be shown for both cases that the number density of fluéedjas is the unique
conserved macroscopic quantity (as in the elastic casexomtrast with the nonlinear
Boltzmann equation for granular gases, the temperatuoeigth not conserved, remains
bounded away from zero, which prevents the solution to tesli Boltzmann equation to
converge towards a Dirac mass.

Moreover let us remark that from the dual form we see that dilesson operator in fact
depends only on two real parameters andx (plusu; of course) and not; plus three
parameters, , m; as a first guess would suggest.

2.2. Universal equilibrium and H-Theorem. A very important feature of these inelastic
scattering models is the existence (and uniquenessuofeersal equilibriumthat is in-
dependent of range of the microscopic-interactions (thaf ithe collision kerneB) and
depending only on the parametets, k« andu;. Precisely, the background forces the sys-
tem to adopt a Maxellian steady state (with density equa):to
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Theorem 2.1. The Maxwellian velocity distribution:

3/2 _ 2
R R e = AL @0
i 1-a)1-p)
_a —
®#:m 1 (2.8)

is the unique equilibrium state @ with unit mass.

Note that this universal equilibrium is coherent with themegk that the collision only
depends om; andk (andu;) from the dual form, since
m ml-x
e O «x
This explicit Maxwellian equilibrium state allows to dewelentropy, spectral and hy-
drodynamical analysis on both the models in the same wagt, Fiom [I8 18] and[[15],
the existence and uniqueness of such an equilibrium statesato establish a linear ver-
sion of the famou#/-Theorem. Precisely, for argonvexC!—function® : R* — R, the
associated so-calldd—functional (relatively to the equilibrium)
Ho(fIM) = f M(v)@(&) do (2.9)
R? M(v) ’
is decreasing along the flow of the equatibnk(1.1) (this isapposite of a physical en-
tropy), with its associated dissipation functional vamghonly whenf is co-linear to the
equilibrium M:

Theorem 2.2(Formal H-Theoren). Let f(t,v) > 0 be a space homogeneous solution
then we have formally

d t,
S = [ apeow (5

M(v)

) dv <0 (t > 0). (2.10)

The application of théd-Theorem withd®(x) = (x — 1)? suggests the following Hilbert
space setting: the unknown distributignhas to belong to the weighted Hilbert space
LAM™Y) = LX(R3; M~1(v)do). Consequently, one defines the Maxwell molecules and
hard spheres collision operatoassociated to the mean-free palth= 1, with their suitable
domains, as follows:

P(Lns) € LM, Range(Lns) € LA(M™),
Lhsf = Cnsf forany f € Z(Lns),

and

P(Linax) = XM, Range(Lmax) € LA(M™),
Limaxf = Qmaxf forany f € 2(Limax)-

Precisely,
D Lns) = {f € LAM™); onsf € M)
whereoys is the collision frequency associated to the hard-spherésion kernel:

1
ons(0) = 5~ f ; lg- nMy(w)dwdn,  ©veR.
R3x

Note thatoys is unbounded]1]: there exist positive constants/; such that

vo(l+ v —u]) < ops(@) < vi(1 + v —u1]), Vo eR>.
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For this reasonZ(Lys) # L2(M™1). On the contrary, the collision frequenayx associ-
ated to the Maxwell molecules collision kernel,

1 _
Tmax(v) = ﬁf . 7 nMy(w) dwdn = 1
R3x$2

is independent of the velocityand Lmax is a bounded operator i (M1). We recall (see
[]) that £y is a negative self-adjoint operatorIgi M~!). Moreover, let us introduce the
dissipation entropy functionals associated3g.x and Lys:

Drax(f) = — fR LnaHE) fO) M@ do,  f €M)
and
Dis(f) = fR Ln(DE) S M@ o, f € ALne).

Note that, by virtue ofl{Z0), if (t) denotes the (unique) solution {o (L. 1)l M) for
hard-spheres interactions, then, with the chdi¢e) = (x — 1),

SO ~ Moy = T Ho(FOIM) = 2 Dre(F(0). (211)

The same occurs faDmax(f(t)). This is the reason why we are looking for a control
estimate for bottDns(f) and Dmax(f) with respect to thé2(M=1) norm of f. It will be
useful to derive an alternative expression for bthax andDys:

Proposition 2.3. For any f € 2(Lhs),

_1 f@)  f@ 7]
Dhs(f) = i jll;%xnzg,xsz lg - 1| [M(U*) - M(v)] Mi(w)M() dw dov dn > 0.

In the same way,

_ 1 ~ [f@) f@T
Z)max(f) = E j]l;fixRi,xsz |q . 1’l| [M(U*) - W] M1(ZU)M(U) dw dv dn > 0.

forany f € L2(M™).

Proof. The proof is a straightforward particular case of the akidv€heorem. Precisely,
let us fix f € 2(Lns), and setf = gM then one has

jﬂ; Lhs(f) f M do = jﬂ; M/\/((v)/\/(l(w)g(v) [g(v*) — g(v)] dw do dn.

XIR3x$? 2no

Moreover, for anyp € 2(Lxs), sinceM is an equilibrium state afps,

lq - nl
[ A MOM@ e - p@)] do do dn = LM, P =0
R3XIR3%$?
It is easy to deduce then that
f Lhs(f) f M do = f |g‘—nl/\/((v)/\/h(w)g(v*) [¢(0) — g(v*)] dw do dn.
R3 R3xR3x52 <70

Finally taking the mean of these two quantities leads to #&rdd result. The same rea-
soning also holds faPmax. O
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3. Quantitative estimates of the spectral gap.In this section, we strengthen the above
result in providing a quantitative lower bound for bdhax(f) andDps(f). The estimate
for Dmax(f) is related to the spectral properties of the collision ofmerdmax while that

of Dis(f) relies on a suitable comparison wifbyax(f). From now ong:, -) denotes the
scalar product of>(M™) and S(£), S,(£L) shall denote respectively the spectrum and
the point spectrum of a given (non necessarily bounded)adgein L2(M1).

3.1. Spectral study for Maxwell molecules. We already saw that the operat@ay :
L2(M™1) — L2(M™1) is bounded, and it is easily seen th@ax splits as

Lnaxf = Lyaxf = f(0)

where L}, is compact and self-adjoint (the proof can be done similaslyn [1]) and we
used that the collision frequenoyh.x associated to the Maxwell molecules is constant.
Moreover, since

(Lmaxf, /)<0,  VfeXM™),
the operator is easily seen to genera@ @emigroup of contractions, and it is known that
S(Lmax) C (—o0,0]. Finally, since ld+ Lmax = L4 IS @ positive, self-adjoint compact
operator, one sees that the spectrunfgfyx is made of a discrete set of eigenvalues with
finite algebraic multiplicities plus possibly-1} in the essential spectrum, with

Sp(Lmax) € (-1,0] (3.1)

and where the only possible accumulation point-4}. Clearly, sinceLmax(M) = 0,
Aoo := 0 is an eigenvalue ofmax With eigenspace given bypan(M). There are other
eigenvalues of max of peculiar interest. Namely, for anfye L2(M1), the weak formula-
tion 1) yields

f (v = u1)Limax(f) do = ZL 7 nlf ()M (w) [o* - v] dodwdn
R} 7T JR3XR3 xS2
1 _ —~—
= _“( - B) Lgf(v)dvﬁ{g,Ml(w)de|q.n|(q‘n)nd”‘

Using the fact that| [g-n|(g-n)ndn = mgq, one has
G2

[ @ Lnath) do=-att-p) [ s [ ©-wMi@do
R R} Ro (3.2)
= -at-p) [ ©-mse)de

The operatotmax being self-adjoint in.2(M™'), one obtains the identity
(fs Lnax((0i = m M)y = a1 = p){f, (v; = )My,  i=1,2,3, VfeL’(M™).
If we denote
A =a(l-p)=x€(0,1),
this means that A is an eigenvalue afmax associated to themomentum eigenvectors

(vi — u1,;)) M(v) for anyi = 1,2, 3. In the same way, technical calculations show that, for
any f € L2(M™),

(Lunax() 0 = i PM) = f Loan(Plo = w1 do
R3

= 2a(1 - )1 - a(l - B)f, lo — tPM) + 6%0%(1 _BAM,
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and, sincelnax is self-adjoint, setting
Ao =2a(1 =) —a(l - ) =2x(1 - x),
one hag Lmax([v—11*M), f) = —A1o{|o—u1> M, f), for any f L span(M). Equivalently,
~£max (8) = _Al,Oa/
where&(v) = (lv — > - %)M, is the energy eigenfunctionassociated te-A; . To
summarize, we obtained three particular eigenvalygsio 1 andA; g of Lnax associated
respectively to the equilibrium, momentum and energy digaetions.
To provide a full picture of the spectrum dinax, we adopt the strategy of Bobylev

[6] based on the application of the Fourier transform to tlaste Boltzmann equation.
Namely, we are looking fot > 0 such that the equation

Loaxf = —-Af,  fel* M), f#0, (3.3)

admits a solution. Applying the Fourier transfor#n to the both sides of the above equa-
tion, we are lead to:

T [Loaxf1(6) = =Af(E),  E€R,
wherefz Z(f). One deduces immediately from the calculations performd#], that

T [Lonaxf1 (&) = % fs € nl[fEIMIET) - FEOMI(0)] dn
with & = &/|&| and
£ =& -2a(1-p)(E-m)n, £ =2a(1 - B)(& - m)n

whiIeX/(\l is the Fourier transform of the background Maxwellian dlsttion, given by

®1|5|2}

2m1

Mu(£) = exp {—iu1 E-

The fundamental property is that even if the equilibriunribsition AM does not make the
integrand of the collision operator vanish pointwise (as ithe case in the elastic case),
surprisingly it still satisfies a pointwise relation in Fairvariables as was noticed n]21].
A simple computation yields

— #| 12
M(E) = exp{—iul-g— il }

2m
and thus one checks easily thAtl(£*) My (™) = M(&), for anyn € §2, and anyé € R°.

Thus, following the method of Bobyle{][6], we rescdl€) = M(&) ¢(&) and define the
corresponding re-scaled operaigr

L0 = 5- fs € nl[p(E) ~ p(©)] dn.

Then, Eq. [[3B) amounts to find > 0 such that the equatio® ¢ (&) = —A@(&) admits a
non zero solutiorp with

f=7 M) e XM (3.4)
where.Z~! stands for the inverse Fourier transform. Using, as in thstiel casel]6, p.

136], the symmetry properties of the operaféitogether with conditiof{314), one obtains
that functions of the form

Puem(E) = [EP* Y u(E), 120,



10 BERTRAND LODS, CIEMENT MOUHOT AND GIUSEPPE TOSCANI

Y., being a spherical harmoni€ € N, m = —¢, ..., {), are eigenvectors o¥’, associated
to the eigenvaluesA,, , = —A,, (k) where, according ta17],

1 ! 1-2k+5?
Apeg=1— ——— mep | "1 d 3.5
nt 2k(1 = %) Ji-0e ° “\"@2=2x)s ° (3.5)

whereP; is the/-th Legendre polynomiak; € IN, ¢ € IN. Note that, according td(3.1),
Ane € (0,1]. Technical calculations prove that the eigenvalues we @jrédaund out,
namely,
/\0/0 =0, AOJ =K, and Al,O = 2K(1 - K),
do actually correspond to the couples¢) = (0,0);(0,1) and(1,0) respectively. More-
over, from the well-known Legendre polynomials property:
€+ 1)Prs1(x) = 2€+ 1)xPy(x) — € Pr_1(x), xeR, (>1,
one obtains the recurrence formula
20+1 v 2¢0+1 ¢
(el 140 ™ Tr)a+y) +1
wherev = 1 — 2x € (-1, 1). Such a recurrence formula together with the relation
1 1- 1/2;'1+2
n+l 1-v2 7
allow to prove by induction ovef € IN that

/\n,€+1 = n+1,0 — /\n+1,5—1/ n, >0 (36)

Auo=1-

Apsre = Age  and  Aypq = A, forany nelN.
Consequently, one sees tmain{A,,;; n,€ > 0} \ {0} = min{A; o; Ao1} which means that
spectral gap o max is given by
pimax = min{Ay,0; Ag1} = min{r; 2x(1 — x)}.
Remark 3.1. Note that,
Mi<Aye—= <12 a(l+¢) <1

In particular, if m; < m thenAp; < A10. Assuming for a while that we are dealing with
species of gases with same masses i, then in the true inelastic case€., e < 1) one
also haslip > Ag1. This situation is very particular to inelastic scatteriagpd means
that the cooling process of the temperature happens moirellsafhan the forcing of the
momentum by the background, whereas whea 1/2 these two processes happen at
exactly the same speédl); = A1). Note also that, whenevdp 1 > A1 (due to the ratio
of mass different frort), the smallest eigenvalue corresponds to the momentuxertide
and not the energy relaxation anymore. This contrasts verginwith the linearized case
(se€[[]). Note also that the first eigenvalues are ordered as ilats in Fig. 1.

The above result can be summarized in the following wheréatestatement follows
from the fact thatl,qx + Id is a self-adjoint compact operator BY(M™1).

Theorem 3.2. The operator L is @ bounded self-adjoint positive operatoddf M)
whose spectrum is composed of an essential {gdr} plus the following discrete part:

Sp(=Limax) = {Aue; n, £ €N} C[0,1)

whereA, ¢ is given by@@H). Moreover,go = 0 is a simple eigenvalue ofmax associated
to the eigenvectoM and—Lnax admits a positive spectral gap

Umax = min{A; o; A1} = min{x; 2x(1 — )}.

Finally, there exists a Hilbert basis &f(M™!) made of eigenvectors 6fLmax.
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FIGURE 1. Evolution ofA; (black solid line),A1 o (black dotted line),
A11 (grey dotted line) and (grey solid line) as functions afe [0, 1]

3.2. Entropy estimate for Maxwell molecules. The result of the above section allows to
provide a quantitative version of tié-Theorem. Precisely, for anf € L>(M!) orthog-
onal to M, using the decomposition of botBinay f and f on the Hilbert basis of?(M™)
made of eigenvectors efLmax (see Theoref 3 2), it is easily proved that:

Drex(f) = - fR Lo fM 0> pinalfla gy, VFLSpan(M). (B.7)

It is well-known that such aoercivity estimatellows to obtain an exponential relax-
ation rate to equilibrium for the solution to the space hoerapus Boltzmann equation.
Namely, givenfy(v) € L*(R%, M~} (v) dv) with unit mass

f folo)do=1,
RS

let f; be the unique solution of(J.1) with initial conditiofiy = f;. According to the
conservation of mass, itis clear ttf@#t— M) is orthogonal toM (for the L2(R3, M~ (v) dv)
scalar product) and, within the entropy language:

S HolfIM) = ~2 D) < ~24tmex HolfiIM)

for ®(x) = (x — 1) or equivalently,
1/2

1/2
(f (fi = M> M dv) < (f (fo— MP M do|  exp (—pimaxt), Yt > 0.
R3 R3

We obtain in this way aexplicitexponential relaxation rate towards equilibrium for the
solution to the space homogeneous linear Boltzmann equatiich is valid for granular
gases of Maxwell molecules and generalizes a well-knowunltrésr classical gase$§L1].
More interesting is the fact that the knowledge of the spégtp of L.« allows to recover
an explicit estimate of the spectral gap of the linear Botmmoperator for hard-spheres
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Lns through a suitable comparison of the entropy productiortionalsDns and Dmax-
This is the subject of the following section.

3.3. Entropy estimate for hard-spheres. The goal of this subsection is to show that
the entropy production functiondys for hard-spheres relates to the one for Maxwell
moleculesDnax. More precisely we shall show that

Proposition 3.3. The entropy production functionafdns and Dn,ax are related by:
Z)hs(f) > c* Z)max(f)/ Vf € @(-Ehs)
for some explicit constart* depending only on andp.

Remark 3.4. The idea of searching for such an inequality was already gmesn [2],
but here the method of proof is different and simpler: onesduoa& need any triangular
inequality between collisions, and the proof reduces to refcé study of a convolution
integral.

Remark 3.5. Note that in the hard-spheres case, the operafgg is unbounded. For a
careful study of its properties (compactness of the noatlpart, definition of the associ-
atedC°-semigroup of contraction in the Hilbert spat& M™1)) we refer toff].

Proof. Let f € 2(Lns). We setu; = 0 in this proof without restriction since this only
amounts to a space translation.

We introduce the following parametrization, for fixed S, v = rn + 9, v* = r*n + 3,
W = TN + @, w* = ry=n + @, Wherer, r*,r, andr,~ are real numbers ang @ are
orthogonal tar. Simple computations show that

B r* 1 1
"= 20— p) +( T 2a(1 —5))7’

while

(1 1-a\, (1 1
“"“(20((1—@_ a )r +(E_2a(1—/3))r‘

Thereforey,, andr,+ only depend o andr*. Then if we denoté the angle between
andn, we get from Prod2]3, where we get £

2
Dns(f) = L f f f g cos O [g(r*n +0) — g(rn + z7)]
2n $2 Jrr*eR Jo,went
M (ron + @) M(rn + 0)do do dr dr* dn
with
12
gl = (15— @ + 1) 2 - )
and
Qi) =1

(15— @l + (2x)2r* = )

where we recall that = a(1—p). We split the integral into two parts accordingtd—r| >
oo > 0 or|r* —r < gy whereg is a positive parameter to be determine latter. Using the

cos O =
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fact thatlg| > [** — r|/2x, one has the following estimate for the first part of the inag

= f dnf dr dr* f lg] cos 6 M(rn + 0) My (rn + @)
2 Js: {Ir*—ri>go} 5, den*

[g(r*n +0) — g(rn + z‘;)]z do dw

2 -1
> %) oo f dnf dr dr*
2n 52 fIr* —rl> g0}

f cos O M(rn +8) Mu(rn + @)[g(r*n + ) — glrn + z7)]2 ds dw
0, 0ent

which corresponds (up to the multiplicative factex)~! go) to the integral fotr — r*| > gy
corresponding to Maxwell moleculess.,

- jﬂ; Xiir=r 500 Lns(Hf M do > —20—10{ jﬂ;s Xr—r+1z00) Lmax (/) fM ™ do. (3.8)

Concerning now the second part of the integral (correspantdi|r* — 7| < gp), we use
that|g| > |0 — @| and we isolate the integration over

1
—f Xr—rt1<oo) Lns(H) f M do > o= dnf dr dr* |r* — 1|
R3 §? {Ir*—ri<oo}

Tt

f 20 (2 )-3/2 f o — @l Mi(@) dw)
sen 210, went (|0 — D2 + (2i)2Jr* — r2)!/?

M(rn + 0) My(ryn) [g(r*n +0)—g(m+ Z_])]z do

where we used the fact that, sinods orthogonal tos,

mq
27‘(@1

Setting& = |r* —r|/2x, if one were able to prove that there is a cons@stich that

o- ol M@) f M (@) i
fRz (o-ap+ey? " e o-ap ey 59

uniformly for 5 € R?> and& € [0, go/2x], then one would obtain the desired estimate (by
doing all the previous transformations backward):

-3/2
Ml(rwnm):( ) Mi@ M (r).

_ f]RS X{\V—r*‘ggo}th(f)fM_l dov > -C f]RS X”V—V*KQQ}LmaX(f)fM_l do.

To study the convolution integral df(3.9), we make a secqiitting betweerj — | >
01 > 0 and|@ — 7| < g (for someg; > 0). It gives

o — | My (@
f | _I 1( 1)/2 di
weR? (|0 — Wf* + &2)
7 — 0| My (@ My (@
2[ I_ _I 1(1)/2dw>£’1f i _1() _ dw
lo-ol>01) (|10 — W + £2) (o-ol>1) (10 — @[> + £2)

Mi() _ f M () _)
> Y qw- — Y Jdw|.
Ql(fmz (o=l +) 2 " Jyosicon (o—al2+ &) 2
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Then we use the obvious estimates

_ Clx,
VOER: VEe(, QQ/ZK],f Mi(@) — do> (x, &)
R (|0 — @] + &2)Y 1+]ol
for an explicit constan€(x, go) > 0 depending only om, gy, and
VoER? V& e [o,go/zx],f &)m
fo-ol<ar} ([0 — @ + £2)
for an explicit constant(x, ;) > 0 going to0 asp; goes td). It yields forg; small enough
(depending o)

f /V[l#)lz dw < 1 f /V[l#)lz do. (3_10)
(o-si<en) (10— @ + &2) 2 Jre (jo - af? + &)
for anys € R?, & € [0, 0p/2x] (we also refer to the Appendix A of this paper for a con-

struction of the parameter). Consequently, for this choice @f we obtain [3D) with
C= Q1/2, i.e.,

_f X:|r—r*|<90]£hs(f)fM‘1 dov > —% f Xllr—r*ISWILmaX(f)fM_l do.
IR3 IR3
This, together with estimatE{3.8), yield

dw < C(k, o) e

Dhs(f) > mi“{g_i' %} Drnan()

which concludes the proof. O

Remark 3.6. The constan€* from the proof can be optimized according to the parameter
00, by explicitingp; as a function oby. Precisely, making use of Lemma A.1 given in the

Appendix,
* — mi @ @} > i
¢ mm{zx’ 2175
with = z%erf‘l(%) whereerf' denotes the inverse error functioerf ' (1) =

0.4769. Notice that this lower bound faf* does not depend on the parameters.

Remark 3.7. The above Proposition provides an estimate of the specaplaf Lys in
L2 (M), Precisely, we recall fronfl] that the spectrum ofs is made of continuous
(essential) spectrufl € R; A < —vy} wherevy = inf,rs ons(v) > 0 and a decreasing
sequence of real eigenvalues with finite algebraic muttifidis which unique possible clus-
ter pointis—vg. Then, sincé is an eigenvalue af’s associated toV1, one sees from the
above Proposition that the spectral gaps of Lys satisfies

nminfx, 2x(1 - )}
NG .

To summarize, one gets the following coercivity estimatetie Dirichlet form:

[hs = min {/\ i =A € (=v0,0), —A € S(Lhs) \ {0}} > C* timax >

Theorem 3.8. For Q = L5 or Lmax, one has the following:

- f}R . QNOf@M @) dv > pllf = opMIE p),  Vf € 2Q

where, g = f f(v)do, and 4 = pmax WheneverQ = Lmax While, for hard-spheres
]RS

interactions,.e., Q = Lps, one hagt > C* timax-



INELASTIC SCATTERING BOLTZMANN MODELS 15

Proof. If o = 0, the proof follows directly from Propositidn-3.3 arld (3. Row, if f is a
given function with non-zero measy, seth = f — of M. Then,g, = 0 so that

- [ QoM 0 do > R,

This leads to the result sin€h) = Q(f) andf Q(f)dv =0. m|
]R3

Adopting now the entropy language, one obtains the follgwelaxation rate, which is
also new in the context of linear Boltzmann equation:

Corollary 3.9. Let fy(v) € L2(R3, M~'(v) dv) be given and lef(t) be the unique solution
of (@A) with initial condition f(t = 0) = fy. Then, for any > 0, one has the following

F &) = M2y < expCunlfo = My VEZO,

wherep = pmax When@Q = Qmax While, for hard-spheres interactionsse., Q = Qys, 0ne
hasu > C* timax-

We state another corollary of the above Theokerh 3.8 in whiglstnengthen the coerci-
vity estimate:

Corollary 3.10. For Q = Lhs or Lmax, there existg, > 0 such that

- [ @UnEFEM o)do > el - o MVGIE, Vf e 2@

Where, = (Z)) dv and G(Z)) is the collision frequency associateddo
Of
R3

Proof. If Q = Lmax, Sinceomax(v) = 1 the estimate is nothing but Theoréml3.8. Let us
consider now the hard-spheres ca@esx Lhs. Arguing as in the proof of Theoreln 3.8, it
suffices to prove the result fgfil M, i.e., wheneverp, = 0. We recall from[1] thatlps
splits as

-Ehsfzt%/f_ghsf; f€ @(ﬁhs)
where.# is a bounded (and compact) operatoEf#GM™'). We then have

Nl = [ A M o= [ L) f M o

K
TR

where||.7 || stands for the norm af#” as a bounded operator dA(M!) and we used
TheorenZ3B. The corollary follows with

_ C*/«lmax
[lZ1] + C*/«lmax )

I MR oy + () <

Co
O

Remark 3.11. Here again, as in Prod—3 3, the constant > 0 can be quantitatively

estimated using for instance the estinfla#€|| < (ﬁ—’;)z “m—‘?l that can be deduced without

major difficulty from the explicit expression.¢f” provided in[] with 7 = (1 —2x)/x > 0.
Remark 3.12. Recalling thatons behaves likg1 + |0]), the above corollary allows to

control from below the entropy production functional by teighted.?((1 + [v)) M, dv)
norm. Such a weighted estimate shall be very useful for fifiesin approximation.
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4. Diffusion Approximation. We shall assume again in this whole section that= 0.
From the results of the previous section, it is possible tivdesome exact convergence
results for the solution of the re-scaled linear kinetictBwolann equation

e fe(t, x,0) + v - Vyfe(t, x,0) = %Q(fg)(t, X,0), (4.1)

with initial condition f.(x,v,0) = fo(x,v) > 0, with (x,v) € R® x R®. Note that all the
analysis we perform here is also valid if the spatial doma&inales the three-dimensional
torusTS. One shall prove thaf. converges, as — 0, to M(v)p wheregp = g(t, x) is the
solution to the (parabolic) diffusion equation:

dio(t, x) = Vy - (DVyp(t, x) + u1 p), F>0, xRS,

200, ) = 00(x) = fR fer0)do 4.2)

where the diffusion coefficieri? depends on the model we investigate (hard-sphere inter-
actions or Maxwell molecules). One shall adopt here theesjyeof [12,[14]. Namely, to
prove the convergence of the solution[io14.1) towards theisa o of @3), the idea is to
use thea priori estimate given by the production of entropy, adid [14] whbigidea was
applied to discrete velocity models of the Boltzmann eaqumtiLet us define the number
density and the current vector

Qs(t,x):f fe(t,x,v)do, je(t,x) = 1 f fe(t,x,v)v do.
R} € IR}
We also definéi, as

ho(t %, 0) = %( £t %,0) — 0.t x)M(v)).

Integrating [4]1) with respect toandv and using the fact that the mean@ff.) is zero,
one gets the mass conservation identity

f fe(x,v,t)dxdo = f fo(x,v)dxdo, (4.3)
R3xIR3

R3XIRS
which means (using the fact that the equation preservesiagativity) that, for any” > 0,
the sequence: (x, t) is bounded ir.*(0, T; L}(IR2)). Now, multiplying [&1) byf. M~* and
integrating oveiR? x IR3, we get

1d

" 1. 2 -1 lf : 2 -1
T Ringfe (%, )M (@) dx do+ o div. (0f2(t,x,0)) M} (0) dx do

R3XR3
B l2 f fe Q(f )M dxdv=0. (4.4)
€7 JR3xRS

Now, because of the divergence form of the integrand, ong text the second term in
#3) is zero while, because of Corolldry3.10,

1 —
2 ) e Q(f )M dx do
XXRU
Co 5
g = j]l;% Ilfelt:2,) = eclts x)M|lL2(R§,ﬁ(v)M*1(v) do) dx (4.5)

=y f h2(t, x, V) M~ (v)o(v) dx do.
R3xR3
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Consequently, Eq[{4.4), together wili{4.5), leads to
1d
2 dt RXR?
Defining therefore the following Hilbert space:
H = LX(R3 x R3, M~} (v) dx do)
endowed with its natural nort ||4r, one has

t
I£0lF, + 2cgf0 e Vo, ds<||fl,, Vi (4.6)

We obtain the following priori bounds:

A (x, 0, )M (v) dx dv < ¢, f h2(x, v, Ho(v) M (v) dx do.

R3xR3

Proposition 4.1. For anye > 0, let f,(t) denotes the unique solution @) with f, € H,
fo > 0. Then, forany) < T < oo

1. The sequendg,). is boundedirL* (0, T; H),

2. the sequenceyoh,). is bounded irl? (0, T; H),

3. the density sequen¢e.). is bounded irL>(0, T ; L'(R?) N L2(R2)),

3
4. the current sequendg.). is bounded ir{Lz((O, T) x Ri)] )
Proof. The first two points are direct consequence$ail (4.6) with

S:ig ||f€HL°°(O,T;’H) S HfOHX,v 4 S:ig || \/EhSHLZ(O,T;V‘I) S (2CU)_1/2 ||f0Hx,v .

Now, Eq. [£3B) proves that the number density sequémngeis bounded i (0, T; L'(R3))
and, according to Cauchy-Schwarz inequality,

0< 0u(t, %) < ( fR At M @) dv)l/z

we see from poinl) that (g, ). is also bounded ih>(0, T ; L*(R?)). Finally, sincef, =
0: M+ ¢h: and [, vM(v) do = 0, one has

T T
f dtf Jjett, 0 dx = f dtf d f vhe(t, x,v) do
0 R3 0 R3 R3

while, from Cauchy-Schwarz inequality and the fact th& bounded from below

2

2
f vhe(t, x,v)do <(f IUIZM(v)dv)(f WM dv)
R3 R} R}
so that . ;
. 2 30*
f dtf )]s(t/x)| dx < —f ”he(t)“%,v dt
0 RS m-Jo
and the conclusion follows from poif2). O

Remark 4.2. Sincef, = ¢h, + o.M, noticing thatf]Rg 0(v)M(v)dv < oo, one deduces
from the above points (2) and (3) and that the sequéngef; ). is bounded ir.2 (0, T; H) .
For anyT > 0, we define
Qr=0TxR xR} and dur= dxdovdt.
The bounds provided by Prdp 1.1 allows to assume that, ugtbsequence,
fo—=f in L*Qr; oM 'dur), he —=h in  L*Qr; oM ' dur);
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0 =0 in L[¥(0,T)xR3), jo—j in [ODxRY[.

LetW € L2(Qr, 0 !Mdpur) = [LZ(QT, oM™ dyT)]* be given. Since = omay is constant
while o = ons behaves asymptotically likd + |0]), one easily has from Cauchy-Schwarz

p(t,x) = f M(@)W(t,x,v)dv € L*((0, T) x R3),
I
and therefore
T T
lim dtf 0e(t, X)p(t, x) dx = f dtf o(t, x)p(t, x) dx.
=0 Jo R3 0 R?
Thus, writingf, = o.M + ¢h,, one checks that
T
lim fWdur = f dtf o(t, X)p(t, x) dx = f oMWV dur,
=0 Ja, 0 R Qr
i.e, fo = oMin L*(Qr, oM™t dur). In particular,f(t, x, v) = o(t, x) M(v). Moreover,
lim h\Wdur = f hWdur. 4.7
QT QT

e—0

foranyW = W(t, x,v) € L2(Qr, 0" Mdpur). Now, choosingV independent o, one sees
that

f h(t,x,v)dv =0, Vt>0, xe€ ]Ri.
R}

Finally, using in [ZJ) a test functioW(t, x, v) = ve(t, x) with ¢ € L*((0,T) x R3), we
deduces from the weak convergenceg.oto j that

it %) = f oh(t, x, 0) do.
R}

Finally, integrating equatiofi{4.1) ovil® leads to the continuity equation

310:(t, x) + divyje(t,x) =0, Ve > 0. (4.8)
We deduce at the limit that
dro(t, x) + divyj(t, x) = 0, t>0, xeT® (4.9)

in thedistributional senseWe summarize these first results in the following:

Proposition 4.3. Under the assumptions of Propositionl4.1, for &y 0, up to a subse-
quence,
i) (o:) converges weakly ib?((0, T) x IR?) to somey;
i) (k) converges weakly ih?(Qr, oM™ dur) to some functioh with
f h(t,x,v)dv = 0;
R

iii) (f:) converges weakly taM in L>(Qr, oM™ dur);

iv) (j:) converges weakly tft, x) = f vh(t, x,v) dvin [L3((0, T) X JR;)]3 .
R}

wheregp and; are related by@3).

The problem of the diffusion approximation is then reducedhte one of finding a
suitable relation, similar to thelassical Fick’s lawlinking the currenij(t, x) to the gradient
of the densityo(f, x). Such a Fick's law (and the corresponding coefficient) stiefiend
heavily on the collision kernel.
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4.1. Maxwell molecules. When dealing with Maxwell molecules.e., wheneverQ =
Lmax, it is possible to obtain an explicit expression for thewhfbn coefficient. Precisely,
multiplying equation[(Z]1) by and integrating oveR? gives

&? dtje(t, x) + (f (v®v): Vife(t, x,0) dv) = % f Lnax(fe)vdo (4.10)
RS RS
Now, as we already saw it (sde(3.2)):

[ £matfrodo = -att = prej. = -doseji
IR3
Then, recalling thaf.(t, x, v) = o:(t, x) M(v) + eh.(t, x,v), Eq. [£ID) becomes

&2 Atje(t, x) + A Vyoe(t,x) + € (f (v®0): Vihe(t, x,0) dv) =—Ao1 Je (4.12)
I

whereA is the matrix of directional temperatures associated taltsteibution M:
# # # #
A= f (v®v) M(v) dv = gId = diag(®—;®—;®—).

R m m m  m

One may rewrite[{Z11) as
#
%ngf(tl x) + /\O,ljf(tl x) = _82 atjs(t/ x) —¢ (f (U ® U) : Vxhs(t/ X, U) dv) .
IR)

Choosing a test-function € (0, T) xR?), the above equation reads in its distributional
form:

ot T T
—f dtf Vle(t,x)Qg(t,x)dx—/\O,]f dtf P(t, x)je(t, x)dt =
m Jo R 0 R

T
_ .2 . _ . i
e j(; dt ju;g At x)je(t, x) dx SLT he(t,x,0)(v®v) : Vob(t, x) dur

and, by virtue of the bounds in Prdp. 4.1, the right-hand simleverges to zero as— 0

and one gets at the limit:
#

jt,x) = ~mAon

in the distributional sensd@he above formula provides the so-called Fick’s law for Malke/
moleculesOne deduces the following Theorem:

Theorem 4.4. Let fy € H and, for anye > 0, let f.(t, x, v) denotes the solution t@L1).
Then, for anyl' > 0, up to a sequence, converges strongly irﬁlzoc(QT; M dur) to-
wardso(t, x) M(v), whereg(t, x) is the solution to the diffusion equation

#

(C)
di0=Vy- (mvxg(t, x)), o(t=0,x) = fle fo(x,v)do. (4.13)

Vaolt, x) (4.12)

Proof. We already proved that converges weakly toM in L2((0, T) ; H). To prove the
strong convergence, since

T T
f lIfe() = 0e(t, )M, = Szf e (B)lI5, — 0
0 0

it suffices to prove that. M converges strongly toM in . This is equivalent to prove
thatg. converges strongly toin L*(0, T; L2 (IR3)). This is done in the spirit of[14] and
[12] by using a compensated-compactness argument. Agetisais define the following
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vectors ofR? xRy : U; = (je, 0c) andV, = (0, ). From [43), one sees thdiv, U, =0,
in particular(div.,U,), is bounded inL*(R? x Rf). Now, from [ZI1), one sees that
A : V,0. is a bounded family i2((0, T) x R3). SinceA = %#Id, it is clear that

0 -TV.o. )

curl V, = ( V.o 0

is bounded ifL{ ((0, T) x R3)]***. Now, from the div-curl Lemm&[17.22Y). - V. = ¢?
converges t@? in 2/((0, T) x R3).

Moreover, we already saw thatis bounded ir.* (0, T ; L*(R2)) from which we deduce
the strong convergence of to g in L2((0, T) ; L2, (R2)). o

loc

Remark 4.5. As already pointed out if21]], the dependence of the diffusividax :=
©*/mAg, on the inelasticity paramete# shows that inelasticity tends to slow down the
diffusive process.

4.2. Hard spheres. When dealing with hard-spheres interactions, it appedfieult to
obtain an explicit expression of the diffusion coefficiedevertheless, its existence can be
deduced from Theoref3.8. Indeed, a direct consequence dfrddholm Alternative is
the following:

Proposition 4.6. For any i = 1,2, 3, the equation
Lhs(xi) = viM(v), veR?

3

v

has a unique solutiowy; € L?(c(v)M~}(v) dv), such thatx;, M) = f xi(v)dv = 0 for
R
anyi=1,2,3.

Remark 4.7. Note that the above Proposition holds true only because wemasd the bulk
velocityu; to be zeroj.e, f]RB vMdv = 0. If one deals with a non-zero bulk velocity,

then if one denotegv) = v—uy, x; then solvesLhs(xi) = 2:(v)M(v) (see alsd@I3), and
moreover the limit diffusion equation includes in this caseadditional drift termuy - V.p,

see EqE2).

Then, settingy = (x1, X2, x2) one defines the diffusion matrix:
D := —f v® x(v)dv € R,
R}

Adapting the result of [20], the diffusion matrix is given By = diag(Dns, Dhs, Dns) for
somepositive constanDys > 0, namely,

D = _f v1x1(v) do = —f Los(rxiM™ do > il -
RS R}

Remark 4.8. Note that, when dealing with Maxwell molecules, for any 1,2, 3, the
functiony; appearing in PropositioR 416 is given hy = —AlTv,-M and we find again the

expression of the diffusion matiX = o 1d.

mAgJ

Recall that, for any” > 0, we defined2r = (0, T)xR3xR? anddur = dxdovdt. Then,
forany¢ € L*(R3) and anyy € €>((0, T) x IR?), multiplying Eq. [Z1) byp(v)y(t, x)
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and integrating ove®2r one has
[ et MO @ Vg9 dur + [ Lot dur =

g( fg 0 fidnp dr + fg T hg(v.vxlp)qsdw). (4.14)

In particular, by virtue of Propositiofis4.1 aiadl4.3, onestbat
tim( | M@0 (0 Vet ) 9o dpr + fg L)@ (t, ) dpr ) = 0.

Now, one deduces easily as In]12] that

fg o(t, x) (z;-V,Cljb(t,x))M(v)qb(v)dyT=—fQ Lhs(M)p(v)p(t, x) dur, (4.15)

which means that, in the distributional sense,
div(oM(v)o(t, x)) = Lns(h), t>0,xeR:.
Sinceh is of zeroR>—average, Propositidii 4.6 asserts that

h(t, x,v) = —x(v) - Vxo(t, x)
and Propositioi418v) leads to

j(t,x) = f vh(t, x,v)dv =D : V,o(t, x).
IR}

We then obtain the following:

Theorem 4.9.Let0 < fo(x, v) € L2(R3XIR3, M~! dv) be given and lef. be the associated
sequence of solution @) whereQ = Qns. Then, up to a subsequendg,converges
strongly ianOC(QT, Mtdur) to o(t, x) M whereg > 0 is the solution to the parabolic
diffusion equatioffd) where the diffusion coefficieb, is given by

Dps := —f v1x1(0v) do € R®®
]RS

v

with x; defined in Prop[Zl6.

Proof. We already proved that converges weakly toM in L2((0, T), H) and the strategy
to prove the strong convergence is that used in The@relm 4ekisely, we define again
U, = (je, 0:) andV, = (0, o.) and observes that agaidiv,;U,). is bounded in.2(R3 x

R}). Now, from [ZTI}), withp(v) = % and setting” = veou

o T

M(v) dv, one sees that

0. Satisfies:

. ®
T:V.0 = fRSLhS(hS)%dv—e(Qt fR I—Zlfgdv+d1vx UR %hgdv])

so thatl" : V,, lies in a bounded subset ﬁfoc((o, T) x R%). SinceT is invertible, one
proceeds as in the proof of Theor&ml4.4 thatonverges strongly to in leoc((o, T) x
R?). m

As we saw it, the diffusivityDps associated to hard-spheres interactions is not explicitly
computable, the solution not being explicit. Itis however possible to obtain a quiartitie
estimate oDyg in terms of known quantities.é., that do not involver,):
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Proposition 4.10. One has the following estimate:
Sl Sl
< Dps £ ———
Chs Ap,1C*m

_{Lns(o:M), o1 M)

whereC* is the constant provided by PrapB.3 and = o MIE
01

> 0.

L2(M-1)
Proof. We begin with the lower bound @s. For anys € IR, let
P(s) = (Lns(x1 + svi M), x1 + soiM).
Since Ly is negative, one had(s) < 0 for anys € IR. Moreover,
P(s) = (Lns(x1), x1) + 25(Lns(x1), 11 M) + 57 (Lns (01 M), 01 M)
= —Dhs + 2sllotMIIF, 1) + 57 (Lis(01 M), I M).
We get therefore that
Dhs > 25ll01 MilF p ) + 85 (Lns(@M), 1 M), Vs € R.
With the definition ofchs (note thaths > 0 sinceLys is negative andy ML M), we get
Dps = (Zs - chssz) ||01M||i2(M_1), Vs e R.
Optimizing with respect te, one sees that
@#
Dhs > ||v1M||L2(M e
To get an upper bound fd,s, we use the fact that, thanks [o(3.2),
Dhs = —(x1, M) = A1 {(Limax(x1), 01 M).

Now, as above, for anye R, defineQ(s) = (Lmax(sx1 + v1 M), sxy1 + v M). Here again,
Q(s) < 0 foranys € R and

Q(5) = s*(Limax(X1), X1) + 25(Limax(x1), M) + (Linax (01 M), 01 M)
= 5% (Lmax(X1), X1) + 2401Dhss = Aoalo1 M,y 1)-
Now, according to ProD.?@Lmax()(l),)a) > &(Lns(x1), x1) = —Dps/C* so that
> Q) >~ =5+ 20:Dpes — Aoallor My YR
Optimizing the rlght-hand side with respectste R, we get
/\01||01M||L2(M1 A31C*Dns
which gives the desired upper bound. O

Remark 4.11. It is possible to provide some upper bound fgy. Namely, using the fact
that there exists; > 0 such thats(v) < v1(1 + |9]), it is easy to see that

1

||UIM||L2(M 1

This very rough estimate could certainly be strengtheneate ldIso that the upper bound
for Dys reads as

f o) M(v) do < =1 f (1 + [o))* M(o) do.
R3

t(1-a)1-p) 1m0
a(l-p)(1-al-p) m

Dhs <
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V5

wheret = — = 3.3154 is a numerical constant and we used the lower bound
erf 1(1/2) V2
of C* provided by Remailk3.6.

Appendix A. We provide here a constructive proof of the coefficientappearing in
PropositionZ3B with the aim of finding quantitative estigmafor the coefficienC* in
Prop[3B. Namely, recalling that= a(1 — ), one has

Lemma A.1. Giveng, > 0, there exist®; > 0 such that

Mi(®) 1 Mi(@) i
f{ 1—mdw<§ju;zl—dw. (A.1)

jo-sl<en) (10 — D + E2) (1o - @ +&2)'?

for anyd € R?, & € [0, oo/2x]. Moreover, setting) = zm—ellerf‘l(%), whereerf™! is the
inverse error function, one has

02 1/2
@12(772—4—132) , Y0 < go < 2x7.

Proof. We assume without loss of generality that= 0. Let gy > 0 be given. Let us fix
0 = (01, 02) € R* andé € [0, go/2x]. Using polar coordinates, it is clear that

my 3?2 M () _
— 5 do =
2m0, {lo-dl<or) (|0 — @|* + &2)

o [ rexp(—ar?) 2 )
exp(—ald|) f _— drf exp( — 2ar(vy cos 0 + v, sin 6)) doe
0 A2+ &2 0
wheres = m1/(20,). Therefore, a sufficient condition (independentpfor (&) to hold
is that

% rexp(—ar?) 1 * rexp(—ar?)

———dr<s | ———d
o R 2y yreaz

It is not difficult to see that this is equivalent to

ert ( Ja(@? + £2)) - erf(Vae) < 5 - Jerf(Na, Ve € [0, /25

r, V&€, 00/2x].

X
whereerf is the error functiorerf(x) = \/LE f exp(—tz) dt, x > 0. This allows to define a
0

function:
z: £eRy b z(E)
wherez(&) is the nonnegative solution to the identity

1 1
Vi@ + &) = exf! (E + serf( «/ag)) (A.2)
whereerf™! is the inverse error function. Clearly the Lemma is provesvjated

o1 := min{z(&), & € [0, oo/2x]} > 0.

Note that, according td_{Al2), the functiait) is continuously differentiable and there is
someC € [0, oo/2x] such thatmin{z(), & € [0, go/2x]} = z(C). In particularz’(C) = 0
and one checks, thanks faTA.2), that

() = 3V Boplad)—¢,  VESO



24 BERTRAND LODS, CIEMENT MOUHOT AND GIUSEPPE TOSCANI

In particularz’(C) = 0 is equivalent to
4% exp(-az*(0)) = 2(0) + O, (A3)

and one sees that(C) = 0 should implyC = 0 whereas, according t€T1A.23(0) # 0.
Consequently, all the local extremazoére positive. Therefore,

01 = z(C) = min{z(&), 0 < & < o/2x} >0

which achieves to prove thdf(A.1) holds true for sagspe> 0. It remains now to provide
some estimate fag;. Precisely, defining

11
0=z 3)

\a
we see from[AR) that?(&) + &2 > 1, for any & > 0, so thatg > n? - % for any
00 € (0,2xn), which achieves to prove the lemma. O
Zﬂ

Remark A.1. According to the above Lemma, with the choicept one obtains

thatmin (%, %) > %.

5 1
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