Detecting rigid convexity of bivariate polynomials - Archive ouverte HAL
Article Dans Une Revue Linear Algebra and its Applications Année : 2010

Detecting rigid convexity of bivariate polynomials

Résumé

Given a polynomial $x \in {\mathbb R}^n \mapsto p(x)$ in $n=2$ variables, a symbolic-numerical algorithm is first described for detecting whether the connected component of the plane sublevel set ${\mathcal P} = \{x : p(x) \geq 0\}$ containing the origin is rigidly convex, or equivalently, whether it has a linear matrix inequality (LMI) representation, or equivalently, if polynomial $p(x)$ is hyperbolic with respect to the origin. The problem boils down to checking whether a univariate polynomial matrix is positive semidefinite, an optimization problem that can be solved with eigenvalue decomposition. When the variety ${\mathcal C} = \{x : p(x) = 0\}$ is an algebraic curve of genus zero, a second algorithm based on Bézoutians is proposed to detect whether $\mathcal P$ has an LMI representation and to build such a representation from a rational parametrization of $\mathcal C$. Finally, some extensions to positive genus curves and to the case $n>2$ are mentioned.
Fichier principal
Vignette du fichier
rz.pdf (298.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00214196 , version 1 (23-01-2008)

Identifiants

Citer

Didier Henrion. Detecting rigid convexity of bivariate polynomials. Linear Algebra and its Applications, 2010, 432 (5), pp.1218-1233. ⟨10.1016/j.laa.2009.10.033⟩. ⟨hal-00214196⟩
162 Consultations
141 Téléchargements

Altmetric

Partager

More