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Abstract

Given a polynomial x ∈ R
n 7→ p(x) in n = 2 variables, a symbolic-numerical

algorithm is first described for detecting whether the connected component of the
plane sublevel set P = {x : p(x) ≥ 0} containing the origin is rigidly convex,
or equivalently, whether it has a linear matrix inequality (LMI) representation,
or equivalently, if polynomial p(x) is hyperbolic with respect to the origin. The
problem boils down to checking whether a univariate polynomial matrix is positive
semidefinite, an optimization problem that can be solved with eigenvalue decompo-
sition. When the variety C = {x : p(x) = 0} is an algebraic curve of genus zero, a
second algorithm based on Bézoutians is proposed to detect whether P has an LMI
representation and to build such a representation from a rational parametrization
of C. Finally, some extensions to positive genus curves and to the case n > 2 are
mentioned.

Keywords

Polynomial, convexity, linear matrix inequality, real algebraic geometry.

1 Introduction

Linear matrix inequalities (LMIs) are versatile modeling objects in the context of con-
vex programming, with many engineering applications [5]. An n-dimensional LMI set is
defined as

F = {x ∈ R
n : F (x) = F0 +

n
∑

i=1

xiFi � 0} (1)
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where the Fi ∈ R
m×m are given symmetric matrices of size m and � 0 means positive

semidefinite. From the characteristic polynomial

t 7→ det(tIm + F (x)) = p0(x) + p1(x)t + · · ·+ pm−1(x)tm + tm

it follows from e.g. [36, Theorem 20] that

F = {x ∈ R
n : p0(x) ≥ 0, . . . , pm−1(x) ≥ 0}. (2)

Hence the LMI set F is basic semialgebraic: it is the intersection of polynomial sublevel
sets. From linearity of F (x) and convexity of the cone of positive semidefinite matrices,
it also follows that F is convex. Hence LMI sets are convex basic semialgebraic.
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Figure 1: The TV screen level set is not LMI.

One may then wonder whether all convex basic semialgebraic sets are LMI. In [23], Helton
and Vinnikov answer by the negative, showing that in the plane (n = 2) some convex
basic semialgebraic sets cannot be LMI. An elementary example is the so-called TV screen
set defined by the Fermat quartic

{x ∈ R
2 : 1 − x4

1 − x4

2 ≥ 0} (3)

see Figure 1.
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1.1 Rigid convexity

Assume that the set F defined in (1) has a non-empty interior, and choose a point x0 in
this interior, i.e.

x0 ∈ int F = {x : F (x) ≻ 0}
where ≻ 0 means positive definite. A segment starting from x0 attains the boundary of F
when the determinant p0(x) = det F (x) vanishes. The remaining polynomial inequalities
pi(x) ≥ 0, i > 0 only isolate the convex connected component containing x0. This moti-
vated Helton and Vinnikov [23] to study semialgebraic sets defined by a single polynomial
inequality

P = {x ∈ R
n : p(x) ≥ 0}. (4)

The set {x : p(x) > 0} is called an algebraic interior with defining polynomial p(x), and
it is equal to int P when P is convex. With these notations, the question addressed in
[23] is as follows: what are the conditions satisfied by a polynomial p(x) so that P is an
LMI set ?

For notational simplicity we will assume, without loss of generality, that x0 = 0, so that
P contains the origin, and hence we can normalize p(x) so that p(0) = 1.

If p(x) = det F (x) for some matrix mapping F (x) we say that p(x) has a determinan-
tal representation. In particular, the polynomial p0(x) in (2) has a symmetric linear
determinantal representation.

Consider an LMI set F as in (1) and define

p(x) = det F (x)

as the determinant of the symmetric pencil F (x). Note that deg p = m, the dimension of
F (x). Define the algebraic variety

C = {x ∈ R
n : p(x) = 0} (5)

and notice that the boundary of F is included in C. Indeed, a point x∗ along the boundary
of F is such that the rank of F (x∗) vanishes. Since the origin belongs to F it holds F0 � 0.

Now consider a line passing through the origin, parametrized as x(t, z) = tz where t ∈ R

is a parameter and z ∈ R
n is any vector with unit norm. For all z, the symmetric

matrix F (x(t, z)) = F0 + t(z1F1 + · · · + znFn) has only real eigenvalues as a pencil of t,
and its determinant t 7→ p(x(t, z)) = det F (x(t)) has only real roots. Therefore, a given
polynomial level set P as in (4) is LMI only if the polynomial t 7→ p(x(t, z)) has only
real roots for all z, it must satisfy the so-called real zero condition [23]. Geometrically
it means that a generic line passing through the origin must intersect the variety (5) at
m = deg p real points. The set P is then called rigidly convex, a geometric property
implying convexity.

A striking result of [23] is that rigid convexity is also a sufficient condition for a polynomial
level set to be an LMI set in the plane, i.e. when n = 2. For example, it can be checked
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easily that the TV screen set (3) is not rigidly convex since a generic line cuts the quartic
curve only twice.

In the litterature on partial differential equations, polynomials satisfying real zero condi-
tion are also called hyperbolic polynomials, and the corresponding LMI set is called the
hyperbolicity cone, see [36] for a survey, and [31] for connections between real zero and
hyperbolic polynomials.

In passing, note the fundamental distinction between an LMI set (as defined above) and
a semidefinite representable set, as defined in [33, 5]. A semidefinite representable set is
the projection of an LMI set:

F = {x ∈ R
n : ∃u ∈ R

nu : F (x, u) = F0 +

n
∑

i=1

xiFi +

nu
∑

j=1

ujGj � 0}

where the variables uj, sometimes called liftings, are instrumental to the construction of
the set through an extended pencil F (x, u). Such a set is called a lifted LMI set. It
is convex semialgebraic, but in general it is not basic. However, it can be expressed as
a union of basic semialgebraic sets. In the case of the TV screen set (3) a lifted LMI
representation follows from the extended pencil

F (x, u) =

















1 + u1 u2

u2 1 − u1

1 x1

x1 u1

1 x2

x2 u2

















obtained by introducing two liftings. It seems that the problem of knowing which convex
semialgebraic sets are semidefinite representable is still mostly open, see [30, 24] for recent
developments.

1.2 Determinantal representation

Once rigid convexity of a plane set, or equivalently the real zero property of its defining
polynomial, is established, the next step is constructing an LMI representation. Alge-
braically, given a real zero bivariate polynomial p(x1, x2) of degree m, the problem consists
in finding symmetric matrices F0, F1 and F2 of dimension m such that

p(x1, x2) = det(F0 + F1x1 + F2x2)

and F0 � 0. If the Fi are symmetric complex-valued matrices, this is a well-studied
problem of algebraic geometry called determinantal representation, see [37] for a classical
reference and [3, 34] for more recent surveys and extensions to trivariate polynomials.

If one relaxes the dimension constraint (allowing the Fi to have dimension larger than m)
and the symmetry constraint (allowing the Fi to be non-symmetric), then results from
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linear systems state-space realization theory (in particular linear fractional representa-
tions, LFRs) can be invoked to design computer algorithms solving constructively the
determinantal representation problem. For example, the LFR toolbox for Matlab [21] is
a user-friendly package allowing to find non-symmetric determinantal representations:

>> lfrs x1 x2

>> f=1/(1-x1^4-x2^4)

..

LFR-object with 1 output(s), 1 input(s) and 0 state(s).

Uncertainty blocks (globally (8 x 8)):

Name Dims Type Real/Cplx Full/Scal Bounds

x1 4x4 LTI r s [-1,1]

x2 4x4 LTI r s [-1,1]

The software builds a state-space realization of order 8 of the transfer function f(x) =
1/p(x). This indicates that a non-symmetric real pencil F (x) of dimension 8 could be
found that satisfies det F (x) = p(x), as evidenced by the following script using the Sym-
bolic Math Toolbox (Matlab gateway to Maple):

>> syms x1 x2

>> D=diag([ones(1,4)*x1 ones(1,4)*x2]);

>> F=eye(8)-F.a*D

F =

[ 1, -x1, 0, 0, 0, 0, 0, 0]

[ 0, 1, -x1, 0, 0, 0, 0, 0]

[ 0, 0, 1, -x1, 0, 0, 0, 0]

[ -x1, 0, 0, 1, -x2, 0, 0, 0]

[ 0, 0, 0, 0, 1, -x2, 0, 0]

[ 0, 0, 0, 0, 0, 1, -x2, 0]

[ 0, 0, 0, 0, 0, 0, 1, -x2]

[ -x1, 0, 0, 0, -x2, 0, 0, 1]

>> det(F)

ans =

-x2^4+1-x1^4

Note that LFR and state-space realization techniques are not restricted to the bivariate
case, but they result in pencils of large dimension (typically much larger than the degree
of the polynomial), and there is apparently no easy way to reduce the size of a pencil.

If one insists on having the Fi symmetric, then results from non-commutative state-
space realizations can be invoked to derive a determinantal representation, at the price of
relaxing the sign constraint on F0. An implementation is available in the NC Mathematica
package [22]. Here too, these techniques may produce pencils of large dimension.
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Now if one insists on having symmetric Fi of minimal dimension m, then two essentially
equivalent constructive procedures are known in the bivariate case to derive Hermitian
complex-valued Fi from a defining polynomial p(x1, x2) of degree m. Real symmetric
solutions must then be extracted from the set of complex Hermitian solutions.

The first one is based on the construction of a basis for the Riemann-Roch space of
complete linear systems of the algebraic plane curve C given in (5). The procedure is
described in [12]: one needs to find a curve of degree m−1 touching C at each intersection
point, i.e. the gradients must match. The algorithm is illustrated in [32]. It is not clear
however how to build a touching curve ensuring F0 � 0.

The second determinantal representation algorithm is sketched in [23] and in much more
detail in [45]. It is based on complex Riemann surface theory [20, 16]. Explicit expres-
sions for the Fi matrices are given via theta functions. Numerically, the key ingredient
is the computation of the period matrix of the algebraic curve and the corresponding
Abel-Jacobi map. The period matrix of a curve can be computed numerically with the
algcurves package of Maple, see [11] and the tutorial [10] for recent developments, in-
cluding new algorithms for explicit computations of the Abel-Jacobi map. A working
computer implementation taking p(x1, x2) as input and producing the Fi matrices as
output is still missing however.

1.3 Contribution

The focus of this paper is mostly on computational methods and numerical algorithms.
The contribution is twofold.

First in Section 2 we describe an algorithm for detecting rigid convexity in the plane.
Given a bivariate polynomial p(x1, x2), the algorithm uses a hybrid symbolic-numerical
method to detect whether the connected component of the sublevel set (4) containing
the origin is rigidly convex. The problem boils down to deciding whether a univariate
polynomial matrix is positive semidefinite. This is a well-known problem in linear systems
theory, for which numerical linear algebra algorithms are available (namely eigenvalue
decomposition), as well as a (more expensive but more flexible) semidefinite programming
formulation.

Then in Section 3 we describe an algorithm for solving the determinantal representation
problem for algebraic plane curves of genus zero. The algorithm is essentially symbolic,
using Bézoutians, but it assumes that a rational parametrization of the curve is available.
The idea behind the algorithm is not new, and can be traced back to [28], as surveyed
recently in [27]. An algorithm for detecting rigid convexity of a connected component
delimited by such curves readily follows.

Extensions to positive genus algebraic plane curves and higher dimensional sets are men-
tioned in Section 4. In particular we survey the case of cubic plane curves and cubic
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surfaces which are well understood. The case of quartic (and higher degree) curves seems
to be mostly open, and computer implementations of determinantal representations are
still missing. Similarly, checking rigid convexity in higher dimensions seems to be com-
putational challenging since it amounts to deciding whether a multivariate polynomial
matrix is positive semidefinite.

2 Detecting rigid convexity in the plane

In this section we design an algorithm to assess whether the connected component delim-
ited by a bivariate polynomial around the origin is rigidly convex. The idea is elementary
and consists in formulating algebraically the geometric condition of rigid convexity of the
set P defined in (4): a line passing through the origin cuts the algebraic curve C defined
in (5) a number of times which is equal to the total degree m of the defining bivariate
polynomial

x ∈ R
2 7→ p(x) =

∑

α∈N2,|α|≤m

pαxα = p00 + p10x1 + p01x2 + p20x
2

1 + p11x1x2 + · · ·

A line passing through the origin can be parametrized as:

x1 = r cos θ = t−1(z−1 + z)
x2 = r sin θ = it−1(z−1 − z)

(6)

where z = eiθ and t = 2r−1. Along this line, we define

t ∈ R 7→ q(t) = tmp(x) =

m
∑

k=0

qk(z)tk (7)

as a univariate polynomial of degree m which vanishes on C. Moreover q(t) is monic since
qm(z) = p(0) = 1. The remaining coefficients are Laurent polynomials

qβ(z) =
m

∑

k=0

qβk(z
k + z−k)

with real coefficients, also called trigonometric cosine polynomials. Set P is rigidly convex
if and only if this polynomial has only real roots, i.e. if the number of intersections of the
line with the curve C is maximal.

2.1 Counting the real roots of a polynomial

A well-known result of real algebraic geometry [2, Theorem 4.57] states that a univariate
polynomial q(t) of degree m has only real roots if and only if its Hermite matrix is positive
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semidefinite. The Hermite matrix is the m-by-m moment matrix of a discrete measure
supported with unit weights on the roots x1, . . . , xm of polynomial q(t) (note that these
roots are not necessarily distinct). It is a symmetric Hankel matrix whose entries (i, j) are
Newton sums Ni+j =

∑m
k=1

xi+j
k . The Newton sums are elementary symmetric functions of

the roots that can be expressed explicitly as polynomial functions of the coefficients of q(t).
Recursive expressions are available to compute the Nk, or equivalently, Nk = trace Ck

where C is a companion matrix of polynomial q(t), i.e. a matrix with eigenvalues xi,
see e.g. [2, Proposition 4.54]. Recall that coefficients of the polynomial q(t) given in
(7) are Laurent polynomials. It follows that the Hermite matrix of q(t) is a symmetric
trigonometric polynomial matrix of dimension m, that we denote by H(z). We have
proved the following result.

Lemma 1 The bivariate polynomial p(x) is rigidly convex if and only if its Hermite
matrix H(z) is positive semidefinite along the unit circle. Coefficients of H(z) are explicit
polynomial expressions of the coefficients of p(x).

2.2 Positive semidefiniteness of polynomial matrices

The problem of checking positive semidefiniteness of a polynomial matrix on the unit
circle is generally referred to as (discrete-time) spectral factorization. It is a well-known
problem of systems and circuit theory [47, 46, 19]. The positivity condition can also
be defined on the imaginary axis (continuous-time spectral factorization) or the real axis.
Various numerical methods are available to solve this problem [29]. Several algorithms are
implemented in the Polynomial Toolbox for Matlab [35]. In increasing order of complexity,
we can distinguish between

• Newton-Raphson algorithms: the spectral factorization problem is formulated as a
quadratic polynomial matrix equation which is then solved iteratively [26]. At each
step, a linear polynomial matrix equation must be solved [25]. Quadratic (resp.
linear) convergence is ensured locally if the polynomial matrix is positive definite
(resp. semidefinite);

• polynomial operations: a sequence of elementary operations is carried out in the
ring of polynomials to reduce the polynomial matrix to some canonical form, see [8]
and [48] for a recent survey. These algorithms are cheap computationally but their
numerical behavior (stability) is unclear;

• algebraic Riccati equation: using state-space realization, the problem is formulated
as a quadratic matrix equation, which in turn can be solved via a matrix eigenvalue
decomposition with a particular structure [46, 19, 41];

• semidefinite programming: polynomial matrix positivity is formulated as a con-
vex semidefinite program, see [41] and the recent surveys [17, 18]. The particular
structure of this semidefinite program can be exploited in interior-point schemes,

8



in particular when forming the gradient and Hessian. General purpose semidefinite
solvers can be used as well.

The semidefinite programming formulation of discrete-time polynomial matrix factoriza-
tion, a straightfoward transposition of the continuous-time case studied in [41], is as
follows. The symmetric trigonometric polynomial matrix H(z) = H0 + H1(z + z−1) +
· · · + Hd(z

d + z−d) of size m is positive semidefinite along the unit circle if and only if
there is a symmetric matrix P of size dm such that

L(P ) =











H0 H1 · · · Hd

H1 0 0
...

. . .

Hd 0 · · · 0











+











I
. . .

I
0 · · · 0











P







I 0
. . .

...
I 0







−











0 · · · 0
I

. . .

I











P







0 I
...

. . .

0 I







=

[

H0 H01

HT
01 0

]

+

[

BT

AT

]

P
[

B A
]

−
[

DT

CT

]

P
[

D C
]

� 0.

(8)

Notice that the columns and rows of the above matrix are indexed w.r.t. increasing powers
of z in such a way that

BT (z−1)L(P )B(z) =









I
z−1

· · ·
z−d









T

L(P )









I
z
· · ·
zd









= H(z).

Positive semidefiniteness of L(P ) then amounts to the existence of a polynomial sum-
of-squares decomposition of H(z). From the Schur decomposition L(P ) = UT U with
U =

[

U0 U1 · · · Ud

]

it follows that

H(z) = U(z−1)T U(z). (9)

Polynomial matrix U(z) = U0 + U1z + · · · + Udz
d is called a spectral factor.

If the LMI problem (8) is feasible, then it admits a whole family of solutions. Assuming
that H0 ≻ 0, maximizing the trace of P subject to the LMI constraint (8) yields a
particular solution P ∗ such that rank L(P ∗) = m. It follows that the Schur complement
of

L(P ) =

[

H0 + BT PB − DT PD ⋆
HT

01 + AT PB − CT PD AT PA − CT PC

]

w.r.t. H0 vanishes, where symmetric entries are denoted by ⋆. This means that P ∗ satisfies
the quadratic matrix equation

AT PA − CT PC − (HT
01 + AT PB − CT PD)H−1

0 (H01 + BT PA − DT PC) = 0

called the (discrete-time) algebraic Riccati equation. In this case, the spectral factor U(z)
in (9) is square non-singular.
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2.3 Example: cubic curve

Consider the component of set (4) around the origin delimited by the cubic polynomial
p(x) = 1 − x1 − 4x2

1 − x2
2 + 4x3

1, see Figure 2.
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Figure 2: Cubic curve and its component around the origin (shaded).

Using the substitution (6) we obtain

q(t) = 12(z + z−1) + 4(z3 + z−3) − (10 + 3(z2 + z−2))t − (z + z−1)t2 + t3.

From the companion matrix

C =





z + z−1 10 + 3(z2 + z−2) −12(z + z−1) − 4(z3 + z−3)
1 0 0
0 1 0





we build (symbolically) the Hermite matrix

H(z) =





3 ⋆ ⋆
z + z−1 22 + 7(z2 + z−2) ⋆

22 + 7(z2 + z−2) 6(z + z−1) − 2(z3 + z−3) 250 + 124(z2 + z−2) + 15(z4 + z−4)



 .
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Solving (numerically) the LMI (8) with SeDuMi interfaced with YALMIP yields the spec-
tral factorization (9) with factor (in Matlab notation)

U(z) =





−0.9021 − 0.7094z2 −0.5284z + 0.2027z3 −11.7639 − 9.6359z2 − 1.5201z4

0.1925z 4.3449 + 1.6218z2 0.7771z − 0.5411z3

1.1578 − 0.5527z2 0.3819z + 0.1579z3 2.4331 − 2.8689z2 − 1.1844z4





which certifies numerically that p(x) is rigidly convex.

2.4 Example: quartic curve

Let us apply the algorithm to test rigid convexity of the TV quartic level set (3) with
p(x) = 1 − x4

1 − x4
2, see Figure 1.

We obtain q(t) = −12 − 2(z4 + z−4) + t4 and the Hermite matrix

H(z) =









4 ⋆ ⋆ ⋆
0 0 ⋆ ⋆
0 0 48 + 8(z4 + z−4) ⋆
0 48 + 8(z4 + z−4) 0 0









.

From the zero diagonal entries and the non-zero entries in the corresponding rows and
columns we conclude that H(z) cannot be positive semidefinite and hence that the TV
quartic level set is not rigidly convex.

2.5 Numerical considerations

Since the Hermite matrix H(z) has a Hankel structure, and positive definite symmetric
Hankel matrices have a conditioning (ratio of extreme eigenvalues) which can be bounded
below by an exponential function of the matrix size [4, 42], it may be appropriate to apply
a congruence transformation on matrix H(z), also called scaling.

For example, if H(eiθ0) is positive definite for some θ0 (say θ0 = 0, but other choices are
also possible), it admits a Schur factorization H(eiθ0) = V T DV with V orthogonal and D
diagonal non-singular. If D is reasonably well-conditioned, we can test positive semidefi-
niteness of the modified trigonometric polynomial matrix H0(z) = V D−1/2H(z)D−1/2V T

along the unit circle, which is such that H0(e
iθ0) is the identity matrix. If D is not well-

conditioned, we can still use H0(z) = V H(z)V T which is such that H0(e
iθ0) is a diagonal

matrix.

The impact of this data scaling on the numerical behavior of the semidefinite programming
or algebraic Riccati equation solvers is however out of the scope of this paper.
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3 LMI sets and rational algebraic plane curves

In the case that the algebraic curve C in (5) has genus zero, i.e. the curve is rationally
parametrizable, an alternative algorithm can be devised to test rigid convexity of a con-
nected component delimited by C. The algorithm is based on elimination theory. It
uses a particular symmetric form of a resultant called the Bézoutian. As a by-product,
the algorithm also solves the determinantal representation problem in this case. As sur-
veyed recently in [27], the key idea of using Bézoutians in the context of determinantal
representations can be traced back to [28].

Starting from the implicit representation

C = {x ∈ R
2 : p(x) = 0} (10)

of curve C, with p(x) a bivariate polynomial of degree m, we apply a parametrization
algorithm to obtain an explicit representation

C = {x ∈ R
2 : x1 = q1(u)/q0(u), x2 = q2(u)/q0(u), u ∈ R} (11)

with qi(u) univariate polynomials of degree m. Algorithms for parametrizing an implicit
algebraic curve are described in [1, 38, 43]. An implementation by Mark van Hoeij is
available in the algcurves package of Maple. The coefficients of qi(u) are generally found
in an algebraic extension of small degree over the field of coefficients of p(x).

With the help of resultants, we can eliminate the variable u in parametrization (11) and
recover an implicit equation (10), see [9, Section 3.3]. To address this implicitization
problem, we make use of a particular resultant, the Bézoutian, see [15, Section 5.1.2].
Given two univariate polynomials g, h of the same degree m (if the degree is not the
same, the smallest degree polynomial is considered as a degree m polynomial with zero
leading coefficients) build the following bivariate polynomial

g(u)h(v)− g(v)h(u)

u − v
=

m−1
∑

k=0

m−1
∑

l=0

bklu
kvl

called the Bézoutian of g and h, and the corresponding symmetric matrix B(g, h) of size
m × m with entries bkl bilinear in coefficients of g and h. As shown e.g. in [15, Section
5.1.2], the determinant of the Bézoutian matrix is the resultant, so we can use it to derive
the implicit equation (10) of a curve from the explicit equations (11).

Lemma 2 Given polynomials q0, q1, q2 in (11), a polynomial p in (10) is given by p(x) =
det F (x) where

F (x) = B(q1, q2) + x1B(q2, q0) + x2B(q1, q0)
= F0 + x1F1 + x2F2

(12)

is a symmetric pencil of size m.
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Proof: Rewrite the system of equations (11) as

g1(u) = q1(u) − x1q0(u) = 0
g2(u) = q2(u) − x2q0(u) = 0

and use the Bézoutian resultant to eliminate indeterminate u and obtain conditions for a
point (x1, x2) to belong to the curve. The Bézoutian matrix is B(g1, g2) = B(q1−x1q0, q2−
x2q0) = B(q1, q2)+x1B(q2, q0)+x2B(q1, q0). Linearity in x follows from bilinearity of the
Bézoutian and the common factor q0(u).�

Lemma 2 provides an implicit equation of curve (10) in symmetric linear determinantal
form.

3.1 Detecting rigid convexity

Once polynomial p(x) is in symmetric linear determinantal form as in Lemma 2, checking
rigid convexity of the connected component containing the origin x = 0 amounts to testing
positive definiteness of F (0) = F0 = B(q1, q2).

Lemma 3 The Bézoutian matrix B(q1, q2) is positive semidefinite if and only if polyno-
mial q1(u) and q2(u) have only real roots that interlace.

Proof: The signature (number of positive eigenvalues minus number of negative eigen-
values) of the Bézoutian of q1(u) and q2(u) is the Cauchy index of the rational function
q1(u)/q2(u), the number of jumps of the function from −∞ to +∞ minus the number of
jumps from +∞ to −∞, see [2, Definition 2.53] or [2, Theorem 9.4]. It is maximum when
B(q1, q2) is positive definite. This occurs if and only if the roots of q1(u) and q2(u) are all
real and interlace.�

Lemma 4 The connected component around the origin delimited by curve (10) is rigidly
convex if and only if B(q1, q2) � 0.

Proof: Since F0 � 0, the set admits the LMI representation {x ∈ R
2 : F (x) � 0}, which

is equivalent to being rigidly convex. �

3.2 Finding a rigidly convex component

If the connected component around the origin is not ridigly convex, it may happen that
there is another rigidly convex connected component elsewhere. To find it, it suffices to
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determine a point x∗ such that F (x∗) � 0. This is equivalent to solving a bivariate LMI
problem.

We can apply primal-dual interior-point methods [33] to solve this semidefinite program-
ming problem, since the function f(x) = − log p(x) = log det F (x)−1 is a strictly convex
self-concordant barrier for the interior of the LMI set. If the LMI set is bounded, min-
imizing f(x) yields the analytic center of the set. If the LMI set is empty, the dual
semidefinite problem yields a Farkas certificate of infeasibility. However, in the bivariate
case a point x∗ satisfying F (x∗) � 0 can be found more easily with real algebraic geometry
and univariate polynomial root extraction.

A first approach consists in identifying the local minimizers of function f(x). They are
such that the gradient g(x) of p(x) vanishes, i.e. they are such that

gi(x) =
∂p(x)

∂xi
= trace(p(x)F−1(x)Fi) = 0. (13)

We can characterize these minimizers by eliminating one variable, say x1, from the system
g1(x) = g2(x) = 0, and solving for the other variable x2 via polynomial root extraction.
Resultants can be used for that purpose.

A second approach consists in finding points on the boundary of the LMI set, which are
such that p(x) = 0 and either g1(x) = 0 or g2(x) = 0. Here too, resultants can be applied
to end up with a polynomial root extraction problem.

From the points generated by these two procedures, we keep only those satisfying F (x) �
0, an inequality that can be certified by testing the signs of the coefficients of the charac-
teristic polynomial of F (x), as explained in the introduction.

3.3 Example: capricorn curve

Let p(x) = x2
1(x

2
1 + x2

2) − 2(x2
1 + x2

2 − x2)
2. With the parametrization function of the

algcurves package of Maple, we obtain a rational parametrization

q0(t) = 45 − 8t + 10t2 + t4

q1(t) = −7 + 44t − 18t2 − 4t3 + t4

q2(t) = 49 − 28t − 10t2 + 4t3 + t4.

With the BezoutMatrix function of the LinearAlgebra package, we build the correspond-
ing symmetric pencil

F (x) =







8 − 4x1 − 4x2 ⋆ ⋆ ⋆

8 + 20x1 − 28x2 40 + 60x1 + 92x2 ⋆ ⋆

−72 + 20x1 + 52x2 −8 − 36x1 − 84x2 776 + 540x1 + 476x2 ⋆

56 − 4x1 − 52x2 −168 + 180x1 + 180x2 −952 − 940x1 + 740x2 1960 − 868x1 − 1924x2







14



whose determinant (up to a constant factor) is equal to p(x). The eigenvalues of F (0) are
equal to 0 (double) and 1392 ± 48

√
533. They are all non-negative which indicates that

the origin lies on the boundary of an LMI region defined by F (x) � 0.

Values of x2 at local optima satisfying the system of cubic equations (13) can be found
with Maple as follows:

> p:=x1^2*(x1^2+x2^2)-2*(x1^2+x2^2-x2)^2:

> solve(resultant(diff(p,x1),diff(p,x2),x1));

0, 0, 0, 1, 1/2, 3+sqrt(5), 3-sqrt(5), 3+sqrt(5), 3-sqrt(5)

from which it follows that, say, the point x1 = 0, x2 = 1/2 is such that F (x) ≻ 0.

x
1

x 2

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3: Capricorn curve defining an LMI region (shaded).

The corresponding LMI region together with the quartic capricorn curve are represented
on Figure 3.
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3.4 Example: bean curve

x
1

x 2

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4: Bean curve defining a region which is not LMI (shaded).

Let p(x) = x4
1 +x2

1x
2
2 +x4

2−x3
1 +x1x

2
2. With the Bézoutians we obtain the following pencil

F (x) =









x1 ⋆ ⋆ ⋆
x2 1 ⋆ ⋆
x1 x2 0 ⋆
x2 1 − x1 0 1 − x1









.

We can check that F (0) has eigenvalues 2 and 0 (triple) and this is the only point for
which F (x) � 0. It follows that the convex set delimited by the curve p(x) = 0 is not
LMI, see Figure 4.

4 Extensions

In this paragraph we outline some potential extensions of the results to algebraic plane
curves of positive genus and varieties of higher dimensions.
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4.1 Cubic plane curves

The case of cubic plane algebraic curves is well understood, see e.g. [44] or [40]. Singular
cubics (genus zero) can be handled via Bézoutians as in Section 3. Smooth cubics (genus
one), also called elliptic curves, can be handled via their Hessians.

Let p(x1, x2) be a cubic polynomial that we homogeneize to p(x0, x1, x2) = x3
0p(x1/x0, x2/x0).

Define its 3-by-3 symmetric Hessian matrix H(p(x)) with entries

Hij =
∂2p(x)

∂xi∂xj

and the corresponding Hessian h(x) = det H(p(x)). The elliptic curve p(x) = 0 has 9 in-
flection points, or flexes, satisfying p(x) = h(x) = 0, and 3 of them are real. Since p(x) and
h(x) share the same flexes and the Hessian matrix yields a symmetric linear determinantal
representation for h(x), we can use homotopy to find a determinantal representation for
p(x).

For real t define the parametrized Hessian g(x, t) = det H(h(x) + tp(x)) and find t∗

satisfying g(x∗, t∗) = p(x∗) at a real flex x∗ by solving a cubic equation. As a result,
we obtain three distinct symmetric pencils not equivalent by congruence transformation.
One of the may be definite hence LMI.

For example, let p(x) = x3
1 − x2

2 − x1. Build the Hessian h(x) = det H(p(x)) = 8(x3
0 +

3x0x
2
1 − 3x1x

2
2) and the parametrized Hessian g(x, t) = det H(h(x) + tp(x)) = 24t3x0x

2
1 −

576t2x2
0x1 + · · · + 110592x3

1. Polynomial g(x, t) matches g(x) at flex x∗
0 = 0 for t∗ ∈

{0, 24,−24} yielding the following three representations

F 1(x) =





1 ⋆ ⋆
−x2 −x1 ⋆
x1 0 1





F 2(x) = 4−
1

3





1 + 3x1 ⋆ ⋆
−x2 −1 − x1 ⋆

−1 + x1 −x2 1 − x1





F 3(x) = 4−
1

3





1 − 3x1 ⋆ ⋆
−x2 1 − x1 ⋆

1 + x1 x2 1 + x1





such that det F i(x) = p(x) for all i = 1, 2, 3. Only the first one generates an LMI set
F 1(x) � 0.
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4.2 Positive genus plane curves

The case of algebraic plane curves of positive genus and degree equal to four (quartic)
or higher is mostly open. Whereas rigid convexity of higher degree polynomials can be
checked with the proposed approach, there is no known implementation of an algorithm
that produces symmetric linear determinantal (and hence LMI) representations in this
case. For quartics, contact curves can be recovered from bitangents. In [14] complex
symmetric linear determinantal representations of the quartic 1+x4

1 +x4
2 could be derived

from the equations of the bitangents found previously by Cayley for this particular curve.

Bézoutians can be generalized to the multivariate case, as surveyed in [15]. In Lemma 2
we derived a symmetric linear determinantal representation by eliminating the variable u
in the system of equations

g1(u) = q1(u) − x1q0(u) = 0
g2(u) = q2(u) − x2q0(u) = 0

corresponding to a rational parametrization x1(u) = q1(u)/q0(u), x2(u) = q2(u)/q0(u) of
the curve p(x1, x2) = 0. In the positive genus case, such a rational parametrization is not
available, but we can still define a system of equations

g1(u1, u2) = x1 − u1 = 0
g2(u1, u2) = x2 − u2 = 0
g3(u1, u2) = p(u1, u2) = 0

describing the curve p(x1, x2) = 0 after eliminating variables u1 and u2. Define the discrete
differentials

∂1g(u, v) =
g(u1, u2) − g(v1, v2)

u1 − v1

, ∂2g(u, v) =
g(v1, u2) − g(v1, v2)

u2 − v2

and the quadratic form

det





g1 ∂1g1 ∂2g1

g2 ∂1g2 ∂2g2

g3 ∂1g3 ∂2g3



 = det





x1 − u1 −1 0
x2 − u2 0 −1
p(u1, u2) ∂1p(u, v) ∂2p(u, v)



 =
∑

α,β

fα,βuαvβ

using bi-indices α and β. Then the matrix F (x) of the quadratic form is a symmetric pencil
satisfying det F (x) = p(x)q(x) where q(x) is an extraneous factor. We hope that q(x) does
not depend on x, even though this cannot be guaranteed in general. For example, in the
case of the Fermat curve p(x) = 1 − x4

1 − x4
2 whose genus is three, using the multires

package for Maple [6], we could obtain

F (x) =





















−1 0 0 0 0 x1 x2

0 0 0 x1 0 −1 0
0 0 0 0 x2 0 −1
0 x1 0 −1 0 0 0
0 0 x2 0 −1 0 0
x1 −1 0 0 0 0 0
x2 0 −1 0 0 0 0





















which is such that det F (x) = −p(x), i.e. q(x) = −1.
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4.3 Surfaces and hypersurfaces

The case n = m = 3, i.e. cubic surfaces, is well understood, see [7] for a full constructive
development. All the self-adjoint linear determinantal representations can be obtained
from the tritangent planes. The number of non-equivalent representations depends on
the number and class of real lines among the 27 complex lines of the surface. See [39] for
a nice survey on cubic surfaces.

Figure 5: The Cayley cubic surface with its convex connected component.

A well-known example is the Cayley cubic

1

u0

+
1

u1

+
1

u2

+
1

u3

= 0
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whose algebraic equation is

u0u1u2 + u0u1u3 + u0u2u3 + u1u2u3 = 0.

Under involutary linear mapping









x0

x1

x2

x3









=
1

2









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

















u0

u1

u2

u3









the dehomogenized (x0 = 1) algebraic equation becomes

p(x) = 1 − x2

1 − x2

2 − x2

3 − 2x1x2x3 = det





1 x1 x2

x1 1 x3

x2 x3 1



 = det F (x)

which is the determinant of the 3x3 moment matrix of the MAXCUT LMI relaxation.
The surface p(x) = 0 is represented on Figure 5, using the surf visualization package. In
particular, we can easily identify the convex connected component containing the origin,
described by the LMI F (x) � 0. The component has four vertices, or singularities, for
which the rank of F (x) drops down to one.

In general, only curves and cubic surfaces admit generically a determinantal representa-
tion. When n > 3 or m > 3 and no lifting is allowed, the hypersurface p(x) = 0 must be
highly singular to have a determinantal representation [3], and hence, a fortiori, an LMI
representation. This leaves however open the existence of alternative algorithms consisting
in constructing symmetric linear determinantal representations of modified polynomials
p(x)q(x), with q(x) globally nonnegative, say q(x) = (

∑

i x
2k
i ) or (

∑

i xi)
2k for k ≥ 1 large

enough.

Finally, let us conclude by remarking that, as a by-product of the proof leading to Lemma
1, checking numerically rigid convexity of a scalar polynomial when n > 2 amounts to
checking positivity of a multivariate Hermite matrix. See e.g. [13] for recent developments
on the use of semidefinite programming for multivariate trigonometric polynomial matrix
positivity.
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