Processing math: 100%
Article Dans Une Revue Advanced Nonlinear Studies Année : 2007

Back to the Keller-Osserman condition for boundary blow-up solutions

Résumé

This article is concerned with the existence, uniqueness and numerical approximation of boundary blow up solutions for elliptic PDE's as Δu=f(u) where f satisfies the so-called Keller-Osserman condition. We {\bleu characterize} existence of such solutions {\bleu for non-monotone f} . As an example, we construct an infinite family of boundary blow up solutions for the equation \bleuΔu=u2(1+cosu) on a ball. We {\bleu prove} uniqueness {\bleu (on balls) when} f is increasing and convex {\bleu in a} neighborhood of infinity and we discuss and perform some numerical computations to approximate such boundary blow-up solutions
Fichier principal
Vignette du fichier
ddgv.pdf (312.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00204941 , version 1 (15-01-2008)

Identifiants

  • HAL Id : hal-00204941 , version 1

Citer

Serge Dumont, Louis Dupaigne, Olivier Goubet, Vicentiu Radulescu. Back to the Keller-Osserman condition for boundary blow-up solutions. Advanced Nonlinear Studies, 2007, pp.271 298. ⟨hal-00204941⟩
426 Consultations
309 Téléchargements

Partager

More