On scattering for NLS: from Euclidean to hyperbolic space - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2009

On scattering for NLS: from Euclidean to hyperbolic space

Résumé

We prove asymptotic completeness in the energy space for the nonlinear Schrodinger equation posed on hyperbolic space in the radial case, in space dimension at least 4, and for any energy-subcritical, defocusing, power nonlinearity. The proof is based on simple Morawetz estimates and weighted Strichartz estimates. We investigate the same question on spaces which kind of interpolate between Euclidean space and hyperbolic space, showing that the family of short range nonlinearities becomes larger and larger as the space approaches the hyperbolic space. Finally, we describe the large time behavior of radial solutions to the free dynamics.
Fichier principal
Vignette du fichier
scattBCD.pdf (244.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00204575 , version 1 (15-01-2008)
hal-00204575 , version 2 (22-01-2008)

Identifiants

Citer

Valeria Banica, Rémi Carles, Thomas Duyckaerts. On scattering for NLS: from Euclidean to hyperbolic space. Discrete and Continuous Dynamical Systems - Series A, 2009, 24 (4), pp.1113-1127. ⟨10.3934/dcds.2009.24.1113⟩. ⟨hal-00204575v2⟩
157 Consultations
425 Téléchargements

Altmetric

Partager

More