Sparse Regression Using Mixed Norms - Archive ouverte HAL
Article Dans Une Revue Applied and Computational Harmonic Analysis Année : 2009

Sparse Regression Using Mixed Norms

Résumé

Mixed norms are used to exploit in an easy way, both structure and sparsity in the framework of regression problems, and introduce implicitly couplings between regression coefficients. Regression is done through optimization problems, and corresponding algorithms are described and analyzed. Beside the classical sparse regression problem, multi-layered expansion on unions of dictionaries of signals are also considered. These sparse structured expansions are done subject to an exact reconstruction constraint, using a modified FOCUSS algorithm. When the mixed norms are used in the framework of regularized inverse problem, a thresholded Landweber iteration is used to minimize the corresponding variational problem.
Fichier principal
Vignette du fichier
Lpq.pdf (1.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00202904 , version 1 (09-01-2008)
hal-00202904 , version 2 (16-01-2008)
hal-00202904 , version 3 (31-05-2008)
hal-00202904 , version 4 (02-06-2009)

Identifiants

Citer

Matthieu Kowalski. Sparse Regression Using Mixed Norms. Applied and Computational Harmonic Analysis, 2009, 27 (3), pp.303-324. ⟨10.1016/j.acha.2009.05.006⟩. ⟨hal-00202904v4⟩
579 Consultations
4040 Téléchargements

Altmetric

Partager

More