Spontaneous fibrillation of the native neuropeptide hormone Somatostatin-14.
Résumé
Natural Somatostatin-14 is a small cyclic neuropeptide hormone with broad inhibitory effects on endocrine secretions. Here we show that natural Somatostatin-14 spontaneously self-assembles in water and in 150mM NaCl into liquid crystalline nanofibrils, which follow characteristic structural features of amyloid fibrils. These non-covalent highly stable structures are based on the Somatostatin native backbone conformation and are formed under non-denaturing conditions. Our results support the hypothesis that self-assembly into amyloid fibrils is a generic property of the polypeptide chain under appropriate conditions. Given recent advances on the mechanisms of biological storage and sorting modes of peptide/protein hormones into secretory granules, we propose that Somatostatin-14 fibrillation could be relevant to the regulated secretion pathway of this neuropeptide hormone. Such a hypothesis is consistent with the emerging concept of the existence of non-disease related but functional amyloids.