Localization on quantum graphs with random vertex couplings
Résumé
We consider Schrödinger operators on a class of periodic quantum graphs with randomly distributed Kirchhoff coupling constants at all vertices. Using the technique of self-adjoint extensions we obtain conditions for localization on quantum graphs in terms of finite volume criteria for some energy-dependent discrete Hamiltonians. These conditions hold in the strong disorder limit and at the spectral edges.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...