On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus

Résumé

We prove that small smooth solutions of weakly semi-linear Klein-Gordon equations on the torus $\T^d \ (d\geq 2)$ exist over a larger time interval than the one given by local existence theory, for almost every value of the mass. We use a normal form method for the Sobolev energy of the solution. The difficulty, in comparison with previous results obtained on the sphere, comes from the fact that the set of differences of eigenvalues of $\sqrt{-\Delta}$ on $\T^d\ (d\geq 2)$ is dense in $\R$
Fichier principal
Vignette du fichier
article.pdf (253.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00177978 , version 1 (09-10-2007)
hal-00177978 , version 2 (28-03-2008)

Identifiants

  • HAL Id : hal-00177978 , version 1

Citer

Jean-Marc Delort. On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus. 2007. ⟨hal-00177978v1⟩
204 Consultations
293 Téléchargements

Partager

More