The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system

Résumé

We consider an Allen-Cahn type equation with a bistable nonlinearity associated to a double-well potential whose well-depths can be slightly unbalanced, and where the coefficient of the nonlinear reaction term is very small. Given rather general initial data, we perform a rigorous analysis of both the generation and the motion of interface. More precisely we show that the solution develops a steep transition layer within a small time, and we present an optimal estimate for its width. We then consider a class of reaction-diffusion systems which includes the FitzHugh-Nagumo system as a special case. Given rather general initial data, we show that the first component of the solution vector develops a steep transition layer and that all the results mentioned above remain true for this component.
Fichier principal
Vignette du fichier
AHM5.pdf (502.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00174999 , version 1 (26-09-2007)
hal-00174999 , version 2 (17-09-2009)

Identifiants

Citer

Matthieu Alfaro, Danielle Hilhorst, Hiroshi Matano. The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system. 2007. ⟨hal-00174999v1⟩

Altmetric

Partager

More