Q-adic Floating-point Transform revisited: arithmetic over small extension field via floating point routines - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Q-adic Floating-point Transform revisited: arithmetic over small extension field via floating point routines

Jean-Guillaume Dumas

Résumé

We present an algorithm to perform arithmetic operations over small extension field via numerical routines. The idea is to convert the $X$-adic representation of modular polynomials, with $X$ an indeterminate, to a $q$-adic representation where $q$ is a prime power larger than the field characteristic. With some control on the different involved sizes it is then possible to perform some of the $q$-adic arithmetic directly with floating point operators. Depending also on the number of performed numerical operations one can then convert back to the $q$-adic or $X$-adic representation and eventually mod out high residues. In this note we present a new version of both conversions: more tabulations and a way to reduce the number of divisions involved in the process are presented.
Fichier principal
Vignette du fichier
qadic.pdf (132.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00173894 , version 1 (20-09-2007)
hal-00173894 , version 2 (02-10-2007)
hal-00173894 , version 3 (26-10-2007)
hal-00173894 , version 4 (21-11-2007)
hal-00173894 , version 5 (04-04-2008)
hal-00173894 , version 6 (23-06-2008)

Identifiants

Citer

Jean-Guillaume Dumas. Q-adic Floating-point Transform revisited: arithmetic over small extension field via floating point routines. 2007. ⟨hal-00173894v2⟩
190 Consultations
216 Téléchargements

Altmetric

Partager

More