Co-expressed Gene Groups Analysis (CGGA): An Automatic Tool for the Interpretation of Microarray Experiments - Archive ouverte HAL
Article Dans Une Revue Journal of Integrative Bioinformatics Année : 2006

Co-expressed Gene Groups Analysis (CGGA): An Automatic Tool for the Interpretation of Microarray Experiments

Résumé

Microarray technology produces vast amounts of data by measuring simultaneously the expression levels of thousands of genes under hundreds of biological conditions. Nowadays, one of the principal challenges in bioinformatics is the interpretation of this large amount of data using different sources of information. We have developed a novel data analysis method named CGGA (Co-expressed Gene Groups Analysis) that automatically finds groups of genes that are functionally enriched, i.e. have the same functional annotations, and are co-expressed. CGGA automatically integrates the information of microarrays, i.e. gene expression profiles, with the functional annotations of the genes obtained by the genome-wide information sources such as Gene Ontology. By applying CGGA to well-known microarray experiments, we have identified the principal functionally enriched and co-expressed gene groups, and we have shown that this approach enhances and accelerates the interpretation of DNA microarray experiments. CGGA program is available at http://www.i3s.unice.fr/~rmartine/CGGA
Fichier principal
Vignette du fichier
Martinez_et_al._-_2006.pdf (223.72 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00172501 , version 1 (26-04-2010)

Identifiants

Citer

Ricardo Martinez, Nicolas Pasquier, Claude Pasquier, Martine Collard, Lucero Lopez-Perez. Co-expressed Gene Groups Analysis (CGGA): An Automatic Tool for the Interpretation of Microarray Experiments. Journal of Integrative Bioinformatics, 2006, 3 (12), pp.1-12. ⟨10.1515/jib-2006-37⟩. ⟨hal-00172501⟩
311 Consultations
183 Téléchargements

Altmetric

Partager

More