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Summary

Microarray technology produces vast amounts of data by measuring simultaneously the
expression levels of thousands of genes under hundreds of biological conditions. Nowa-
days, one of the principal challenges in bioinformatics is the interpretation of this large
amount of data using different sources of information. We have developed a novel data
analysis method named CGGA (Co-expressed Gene Groups Analysis) that automatically
finds groups of genes that are functionally enriched, i.e. have the same functional annota-
tions, and are co-expressed. CGGA automatically integrates the information of microar-
rays, i.e. gene expression profiles, with the functional annotations of the genes obtained by
the genome-wide information sources such as Gene Ontology. By applying CGGA to well-
known microarray experiments, we have identified the principal functionally enriched and
co-expressed gene groups, and we have shown that this approach enhances and accelerates
the interpretation of DNA microarray experiments.1

Keywords: Microarray, Ontology, Co-expression, Genes and Functional Annotations.

1 Introduction

One of the main challenges in microarray data analysis is to highlight the principal functional
gene groups using different sources of genomic information. These sources of information,
constantly growing by an ever-increasingly volume of genomic data, are:

• Taxonomies, thesaurus and ontologies providing the semantic information for the genes,
for example: Gene Ontology (GO)2 , Unified Medical Language System (UMLS), Med-
ical Subject Headings (MESH), Universal Protein Ressource (Uniprot), etc.

1CGGA program is available at http://www.i3s.unice.fr/∼rmartine/CGGA
2Gene Ontology project: http://www.geneontology.org/
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• Literature and bibliographic databases (articles, on-line libraries, etc.) covering the re-
sults of previous analysis: Pubmed, Medline, etc.

• Experience databases: Arrayexpress, Gene Expression Omnibus (GEO), etc.

• Nomenclature databases: human (HUGO), fruit fly (flybase), yeast (SGD), etc.

A variety of statistical and data analysis approaches, identifying groups of co-expressed genes
based only on the expression profiles, i.e. without taking into account prior knowledge, have
been reported: [4], [6], [8], [22]. A common characteristic of purely numerical approaches is
that they determine gene groups (called clusters) of potential interest; however, they leave to
the expert the task of discovering and interpreting biological similarities hidden within these
groups.

These methods are useful, because they guide the analysis of the co-expressed gene groups.
Nevertheless, their results are often incomplete, because these approaches do not include bio-
logical considerations and also, they reject heterogeneous functional groups i.e. that belong
to various functional groups [21]. Actually, one of the major goals in bioinformatics is the
automatic integration of biological knowledge from different sources of information with gene
expression data [2]. A first assessment of the methods developed to answer this challenge was
proposed by Chuaqui [5].

Nowadays, one of the richest sources of biological annotations is contained on structured and
controlled vocabulary such as ontologies. These annotations can be functional, relational and
syntactic information on genes. We target here the enrichment of two recently developed re-
search orientations, sequential and a priori, that exploit multiple sources of annotations such
as Gene Ontology.

The sequential axis methods build co-expressed gene clusters (groups of genes with a similar
expression profiles). Then they detect co-annotated gene subsets (sharing the same annotation).
Afterwards, the statistical significance of these co-annotated gene subsets is tested. Among the
methods in this axis let us quote Onto Express [7], Quality Tool [9], EASE [10], THEA [15] and
Graph Modeling [21].

The a priori axis methods first finds functionally enriched groups (FEG), i.e. groups of co-
annotated genes by function. Then they integrate the information contained in the profiles of
expression. Later on, the statistical significance of the FEG is tested by an enriched score [14],
a pc-value based on a hypergeometric distribution [3], or a z-score test [11].

Our approach, called CGGA (Co-expressed Gene Groups Analysis), is inspired by the a priori
axis: the FEG are initially formed from the Gene Ontology, next a function, which synthesizes
the information contained in the expression data, is applied in order to obtain an arranged
gene list. In this list, the genes are sorted by decreasing expression variability. The statistical
significance of the FEG obtained is then tested using a similar hypothesis proof as presented in
Onto Express. Finally, we obtain co-expressed and statistically significant FEG.

The IGA algorithm [3] is a method from the a priori axis that allows to find the FEG of most
expressed genes, leaving out all the FEG made up of less expressed genes that have however
a similar level of expression and thus can be related later. Our CGGA method is an extension
of the IGA algorithm that finds all subsets FEG of significant co-expressed genes with similar
level of expression.

http://journal.imbio.de/
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This article is organized in the following way: in section 2 we describe the validation data
as well as the tools used: databases, ontologies, statistical packages; our algorithm CGGA
is described in section 3; the results obtained are presented in section 4 and the last section
presents our conclusions.

2 Data and Methods

2.1 Dataset and Statistical Pretreatment

In order to evaluate our approach, the CGGA algorithm was applied to the DeRisi dataset
which is one of the most studied in this field [6]. This dataset measures the variations in gene
expression profiles during the cellular process of diauxic shift for the yeast Saccharomyces
Cerevisiae. When inoculated into a glucose-rich medium (anaerobic growth), the budding yeast
can convert the glucose to ethanol (aerobic respiration), the shift from anaerobic fermentation
of glucose to aerobic respiration of ethanol is the so-called diauxic shift.

The technique used is double channel microarray, obtained by two color fluorochromes with
distinct emission spectra Cy3 and Cy5. The DeRisi dataset contains the expression levels of
6199 ORF’s, opening reading frame, of the yeast (an entirely sequenced organism), for 7 tempo-
ral points that correspond to samples harvested at successive two-hour intervals after an initial
nine hours of growth.

The dataset was pretreated by taking the log2 ratios (to consider cellular inductions and repres-
sions in a numerically equal way) and applying the imputation algorithm of k-nearest neighbors
[12] in order to treat the missing values (1.9% of the total).

2.2 Ontology and Functionally Enriched Groups (FEG)

In order to fully exploit data, knowledge discovery systems rely on a formal representation
of information based on a well-defined semantic [19]. These formal requirements have led
to the utilisation of the well structured ontology Gene Ontology (GO) and the nomenclature
database SGD3. Sructure of Gene Ontology (GO) and the annotations of Saccharomyces Cere-
visiae Genome with GO terms were retrieved from the GO database web site4 on may 2006.
Automatic annotations not reviewed by curators (IEA evidence code) were discarded. For each
gene product, we have stored all the functional annotations of the gene product and his parents
preserving the hierarchical structure of GO.

Gene Ontology (GO)

GO is a controlled vocabulary developed by a consortium of scientists to address the need for
consistent descriptions of gene products in different databases. It can be used to annotate a
gene or gene product by a GO-term, with regard to its molecular functions (GO:MF), cellular
localizations (GO:CL) and biological processes (GO:BP).

GO-terms are organized in structures called directed acyclic graphs (DAGs), which differ from
hierarchies in that a child, or more specialized, term can have many parent, or less specialized,

3Saccharomyces Genome Database: http://www.yeastgenome.org/
4http://www.godatabase.org/dev/database/
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terms. Annotators can assign properties of gene products at different levels, depending on how
much is known about a gene [1].

Genome Data

In order to be congruent with GO annotations files and among the multiple yeast gene identi-
fiers, we have used the yeast Saccharomyces cerevisiae database. SGD is a scientific database
of the molecular biology and genetics of the yeast [24].

Functionally Enriched Groups (FEG)

Queries carried out on the GO database have built the whole set of the FEG: each FEG corre-
sponds to a couple made up of a GO-term and of the list of genes annotated by this one.

2.3 Expression Profile Measure of the Genes

In order to incorporate the expression profile of the genes, we have used a measurement of their
variability of expression, f-score, which is more robust than other measurements such as anova,
fold change or t-student statistics [17].

This measurement enables us to build a list of genes, g-rank, ordered by decreasing expression
variability. We have used the SAM program [23] to calculate the f-score associated with each
gene.

3 Co-expressed Gene Groups Analysis (CGGA)

The CGGA is based on the idea that any resembling change (co-expression) of a gene subset
belonging to an FEG is physiologically relevant. We say that two genes are co-expressed if they
are close in the sense of the metric given by the expression variability (f-score). The CGGA
algorithm computes a pc-value for each FEG that estimates its coherence (according to the
g-rank) and thus allows to detect the statistically significant groups.

3.1 CGGA Algorithm

The CGGA algorithm first builds the g-rank list from the expression levels and the FEG from
the GO database. For each FEG of n genes, the algorithm determines the n(n + 1)/2 gene
subsets that we want to test for co-expression. For each subset we compute the pc-value cor-
responding to the test described below in order decide whenever the genes of the subset are
co-expressed.

Let H0 be the hypothesis that x genes from one of these subsets were associated by chance,
given their place on the g-rank list. If H0 is rejected, there are good chances that the genes
belonging to the subset are improbably close on the list because they have a very similar ex-
pression profile.

To compute the probabilty that H0 is true for a fixed subset FEG or class, let us ask the question,
how likely is to find x members from the class placed this way on the g-rank list? The answer
to this question is given by the following hypergeometric distribution:

http://journal.imbio.de/
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p(X = x|N,Rg(x), n) =

(
Rg(x)

x

) (
N −Rg(x)

n− x

)

(
N
n

)

where:
p(X = 0|N,Rg(x), n) = 0

with:

• N : total number of genes in the dataset,

• n : number of genes in the FEG,

• x : position of the gene in the FEG (previously ordered by rank),

• rg(x) : absolute rank of the gene of position x in the g-rank list,

• Rg(x) : number of ranks (in the g-rank list) between the gene of position x from its FEG
predecessor. Rg(x) is calculated from the absolute ranks rg(x) according to the formula:

Rg(x) = rg(x) − rg(x−1) + 1 where Rg(0) = rg(x) = 1.

The pc-value corresponding to this hypothesis test is (refer to [7] for details):

pc− value(x) = 1−
x∑

k=1

p(X = k|N, Rg(k), n).

In order to accept or reject H0 we will use the following significance threshold:

p− value = Min

{
1

N
,

1

|Ω|

}
,

where |Ω| is the cardinality of the set of functional annotations. So, for each FEG, if pc −
value(x) < p− value then H0 is rejected, i.e. the FEG is statistically significant.

Pseudo-code for CGGA algorithm is presented on Figure 1. The algorithm has been imple-
mented in Perl (language). It takes as input the list of annotations for each gene (generated by a
query on the database GO database containing all the GO annotations) and the ordered g-rank
list of the N genes. It returns as output the list of the groups of significant co-expressed genes.

The algorithm begins by computing the p-value (stage 2) and generating the FEG from the GO
annotations (stages 3 to 9). Then it considers successively each FEG (stages 10 to 18). For
each FEG, it takes all non-empty subsets and computes the pc-value for each of them (stages
11 to 16). If the computed pc-value is less than p-value, the subset is added to the FEG results
list (stages 13 to 15). The added subsets that are non-maximal according to the inclusion are
deleted (stage 17).

http://journal.imbio.de/
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Input: List of annotations for each gene G: annotations(G).
Ordered list of N genes: g-rank.

Output: Results set containing the FEG of co-expressed genes: results(FEGA).

1 Begin
2 compute p-value
3 for each annotation A of the GO do
4 for each gene G do
5 if A ∈ annotations(G) then
6 FEGA ← FEGA U G
7 end if
8 end for
9 end for
10 for each FEGA do
11 for each subset S of FEGA do
12 compute pc− value(S)
13 if pc− value(S) < p− value then
14 results(FEGA)← results(FEGA)US
15 end if
16 end for
17 delete from results(FEGA) the non maximal S according to inclusion
18 end for
19 results ← Ui=Aresults(FEGi)
20 End

Figure 1: CGGA Algorithm

For example, let the FEGA annotated set,

FEGA = {g1, g2, g3},
thus we have:

results(FEGA) = {{g1}, {g2}, {g3}, {g1, g2}, {g2, g3}, {g1, g2, g3}}.
Then, all the subsets of {g1, g2, g3} are deleted from results(FEGA). Finally, the total result
consists of all the groups of co-expressed and significant genes (stage 19).

3.2 Example

An example of the CGGA applied to a group of co-annotated genes is presented in Table 1. The
data used in the example is from the experiment carried out by DeRisi (see section 2.1), where
the diauxic shift process of the yeast, Saccharomyces Cerevisiae, was analyzed.

The ordered g-rank list was computed using the f-score obtained with the SAM program (see
section 2.3). The data of the FEG, annotated ”vacuolar protein catabolism”, was obtained from
the GO database (see section 2.2). This FEG contains 4 genes (n = 4) whose rows in the total
g-rank list vary from 6 to 424.

http://journal.imbio.de/
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In Table 1 we show the values of the parameters needed to determine the significant gene
subsets within the FEG. We have highlighted the subset of genes: {1, 3}, from vacuolar protein
catabolism FEG, found significantly co-expressed by CGGA.

List g-rank x Gene ID (SGD) GO Annotation rg(x) Rg(x)

1 1
2 2

6 1 S000000490 VACUOLAR PROTEIN CATABOLISM 6 1
7 7
8 2 S000001586 VACUOLAR PROTEIN CATABOLISM 8 3

69 3 S000000786 vacuolar protein catabolism 69 62

424 4 S000006075 vacuolar protein catabolism 424 356

N N

Table 1: CGGA Analysis for the FEG of genes annotated ”vacuolar protein catabolism”

CGGA tested for H0 the (4*5)/2=10 FEG subsets computing their pc-value and comparing it to
the p-value. For example, the pc-value corresponding to the subset {S000000490, S000001586}
of rank 6 and 8 in g-rank is 2.63E−05 (cf. Table 2). This pc-value being lower than p-value,
fixed at 6.88E−04 (cf. section 3.1), CGGA rejected H0 and the group of genes {S000000490,
S000001586} is then labelled statistically significant and co-expressed. We see that the subset
with genes of rank 6 and 8 is very close and then co-expressed. On the other hand the genes
of rank 69 and 424 are rather distant from their closer neighbours, i.e. the groups that contain
them are not co-expressed significantly.

4 Results

In order to evaluate our method, we compared the results obtained by DeRisi [6], IGA [3] and
CGGA. The results obtained using CGGA for the over-expressed and under-expressed genes
are presented in Table 2 and Table 3 respectively. As expected, almost all groups identified as
significantly co-expressed by the DeRisi method have also been identified by the CGGA. The
groups identified by CGGA and DeRisi are in bold, the ones identified only by CGGA are in
italics, and the only group identified also by IGA is in SMALL CAPS.

In the case of over-expressed genes (Table 2), CGGA found seven of the nine groups obtained
manually by DeRisi [6]. The two annotated groups ”glycogen metabolism” and ”glycogen
synthase” have not been identified by CGGA because they are expressed only at the initial phase
of the process. However CGGA identified eight other statistically significant and coherent
groups. Only one of these eight other groups has also been identified by IGA and none of them
by DeRisi.

http://journal.imbio.de/
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Functionally Enriched GO Group n genes x Over- pc− value
expressed genes

proton-transporting ATP synthase com-plex 2 2 4.38E−06

invasive growth (sensu Saccharomyces) 5 3 6.13E−06

signal transduction during filamentous growth 2 2 8.77E−06

respiratory chain complex II 4 4 3.75E−05

succinate dehydrogenase activity 4 4 3.75E−05

mitochondrial electron transport 4 4 3.75E−05

aerobic respiration 36 10 3.30E−05

tricarboxylic acid cycle 14 5 5.09E−05

tricarboxylic acid cycle 14 5 6.54E−05

gluconeogenesis 12 2 9.64E−05

response to oxidative stress 10 3 1.55E−06

filamentous growth 8 4 9.06E−05

VACUOLAR PROTEIN CATABOLISM 4 2 2.63E−05

respiratory chain complex IV 8 2 4.05E−04

cytochrome-c oxidase activity 8 2 4.05E−04

Table 2: Over-Expressed FEGs obtained by CGGA with a p− value = 6.88E−04

For the case of under-expressed genes (Table 3), CGGA has found seven of the eight gene
groups selected manually by DeRisi. As for over-expressed genes, the group annotated ”ri-
bosome biogenesis” was not identified by CGGA, because it was only expressed during the
final phase of the process. CGGA have also identified seven other statistically significant and
coherent groups which were not identified on the DeRisi analysis nor by IGA.

The three groups identified by DeRisi that CGGA did not identify, namely the over-expressed
groups ”glycogen metabolism” and ”glycogen synthase”, and the under-expressed group ”ri-
bosome biogenesis” share two important properties. First, they contain genes belonging to a
heterogeneous structure, i.e genes that appertain to several functional groups. Second, these
FEG are not expressed throughout the entire process but only during a specific phase. De-
tect these groups will only be possible by integrating information on the metabolic pathways
ontologies such as: KEGG, EMP, CFG, etc.

5 Conclusion

The CGGA algorithm presented in this article makes it possible to automatically identify groups
of significantly co-expressed and functionally enriched genes without any prior knowledge of
the expected outcome. CGGA can be used as a fast and efficient tool for exploiting every source
of biological annotation and different measure of gene variability.

In contrast to sequential approaches such as [7], [9], [10], [15] and [21], CGGA analyze all the
possible subsets of each FEG and does not depend on the availability of fixed lists of expressed
genes. Thus, it can be used to increase the sensitivity of gene detection, especially when dealing
with very noisy datasets. CGGA can even produce statistically significant results without any

http://journal.imbio.de/
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Functionally Enriched GO Group n genes x Under- pc− value
Expressed genes

chromatin modification 6 5 2.35E−06

mitochondrial inner memb. prot. inser. complex 3 2 3.60E−06

regulation of nitrogen utilization 4 2 7.20E−06

acid phosphatase activity 4 2 7.20E−06

histone acetylation 4 4 7.95E−06

nucleolus 52 10 3.41E−05

rRNA modification 10 3 2.75E−05

transcription initiation from RNA poly. II prom. 14 3 1.00E−05

mitochondrial matrix 15 3 1.25E−05

processing of 20S pre-rRNA 11 2 1.97E−04

ribosomal large subunit biogenesis 9 4 3.17E−04

small nucleolar ribonucleoprotein complex 20 3 2.52E−04

cytosolic large ribosomal subunit 69 13 2.87E−04

ribosomal large subunit assembly and maint. 21 2 2.52E−04

Table 3: Under-Expressed FEGs obtained by CGGA with a p− value = 6.88E−04

experimental replication. It does not need that all genes in a significant and co-expressed group
change, so it is therefore robust against imperfect class assignments, which can be derived
from public sources (wrong annotations in ontologies) or automated processes (naming errors,
spelling mistakes, etc.).

The automated functional annotation provided by our algorithm reduces the complexity of mi-
croarray analysis results and enables the integration of different sources of genomic information
such as ontologies.

CGGA can be used as a tool for platform-independent validation of a microarray experiment
and its comparison with the huge number of existing experimental databases and the documen-
tation databases. Experimental results show the interest of our approach and make it possible to
identify relevant information on the analyzed biological processes. In order to identify hetero-
geneous groups of genes expressed only in certain phases of the process, we plan to integrate
the information concerning the metabolic pathways ontologies for future work.
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