Discussion of "Second order topological sensitivity analysis" by J. Rocha de Faria et al - Archive ouverte HAL
Article Dans Une Revue International Journal of Solids and Structures Année : 2008

Discussion of "Second order topological sensitivity analysis" by J. Rocha de Faria et al

Marc Bonnet

Résumé

The article by J. Rocha de Faria et al. under discussion is concerned with the evaluation of the perturbation undergone by the potential energy of a domain $\Omega$ (in a 2-D, scalar Laplace equation setting) when a disk $B_{\epsilon}$ of small radius $\epsilon$ centered at a given location $\hat{\boldsymbol{x}\in\Omega$ is removed from $\Omega$, assuming either Neumann or Dirichlet conditions on the boundary of the small `hole' thus created. In each case, the potential energy $\psi(\Omega_{\epsilon})$ of the punctured domain $\Omega_{\epsilon}=\Omega\setminus\B_{\epsilon}$ is expanded about $\epsilon=0$ so that the first two terms of the perturbation are given. The first (leading) term is the well-documented topological derivative of $\psi$. The article under discussion places, logically, its main focus on the next term of the expansion. However, it contains incorrrect results, as shown in this discussion. In what follows, equations referenced with Arabic numbers refer to those of the article under discussion.
Fichier principal
Vignette du fichier
discussion_rocha_de_faria_et_al.pdf (91.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00168443 , version 1 (28-08-2007)

Identifiants

Citer

Marc Bonnet. Discussion of "Second order topological sensitivity analysis" by J. Rocha de Faria et al. International Journal of Solids and Structures, 2008, 45, pp.705-707. ⟨hal-00168443⟩
252 Consultations
129 Téléchargements

Altmetric

Partager

More