A combinatorial basis for the free Lie algebra of the labelled rooted trees
Résumé
The pre-Lie operad can be realized as a space T of labelled rooted trees. A result of F. Chapoton shows that the pre-Lie operad is a free twisted Lie algebra. That is, the S-module T is obtained as the plethysm of the S-module Lie with an S-module F. In the context of species, we construct an explicit basis of F. This allows us to give a new proof of Chapoton's results. Moreover it permits us to show that F forms a sub nonsymmetric operad of the pre-Lie operad T.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...