A combinatorial basis for the free Lie algebra of the labelled rooted trees - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

A combinatorial basis for the free Lie algebra of the labelled rooted trees

Résumé

The pre-Lie operad can be realized as a space T of labelled rooted trees. A result of F. Chapoton shows that the pre-Lie operad is a free twisted Lie algebra. That is, the S-module T is obtained as the plethysm of the S-module Lie with an S-module F. In the context of species, we construct an explicit basis of F. This allows us to give a new proof of Chapoton's results. Moreover it permits us to show that F forms a sub nonsymmetric operad of the pre-Lie operad T.
Fichier principal
Vignette du fichier
BerLiv0707.pdf (199.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00165987 , version 1 (30-07-2007)

Identifiants

Citer

Nantel Bergeron, Muriel Livernet. A combinatorial basis for the free Lie algebra of the labelled rooted trees. 2007. ⟨hal-00165987⟩
125 Consultations
66 Téléchargements

Altmetric

Partager

More