Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture - Archive ouverte HAL
Article Dans Une Revue Journal of the American Mathematical Society Année : 2002

Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture

Résumé

Given an Iterated Function System (IFS) of topical maps verifying some conditions, we prove that the asymptotic height optimization problems are equivalent to finding the extrema of a continuous functional, the average height, on some compact space of measures. We give general results to determine these extrema, and then apply them to two concrete problems. First, we give a new proof of the theorem that the densest heaps of two Tetris pieces are sturmian. Second, we construct an explicit counterexample to the Lagarias-Wang finiteness conjecture.
Fichier non déposé

Dates et versions

hal-00165771 , version 1 (27-07-2007)

Identifiants

  • HAL Id : hal-00165771 , version 1

Citer

Thierry Bousch, Jean Mairesse. Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture. Journal of the American Mathematical Society, 2002, 15 (1), pp.77-111. ⟨hal-00165771⟩
92 Consultations
0 Téléchargements

Partager

More