Animation of virtual mannequins, robot-like simulation or motion captures
Résumé
In order to optimize the costs and time of design of the new products while improving their quality, concurrent engineering is based on the digital model of these products, the numerical model. However, in order to be able to avoid definitively physical model, old support of the design, without loss of information, new tools must be available. Especially, a tool making it possible to check simply and quickly the maintainability of complex mechanical sets using the numerical model is necessary. Since one decade, our team works on the creation of tool for the generation and the analysis of trajectories of virtual mannequins. The simulation of human tasks can be carried out either by robot-like simulation or by simulation by motion capture. This paper presents some results on the both two methods. The first method is based on a multi-agent system and on a digital mock-up technology, to assess an efficient path planner for a manikin or a robot for access and visibility task taking into account ergonomic constraints or joint and mechanical limits. In order to solve this problem, the human operator is integrated in the process optimization to contribute to a global perception of the environment. This operator cooperates, in real-time, with several automatic local elementary agents. In the case of the second approach, we worked with the CEA and EADS/CCR to solve the constraints related to the evolution of human virtual in its environment on the basis of data resulting from motion capture system. An approach using of the virtual guides was developed to allow to the user the realization of precise trajectory in absence of force feedback. The result of this work validates solutions through the digital mock-up; it can be applied to simulate maintenability and mountability tasks.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...