Filtering the Wright-Fisher diffusion - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Filtering the Wright-Fisher diffusion

Résumé

We consider a Wright-Fisher diffusion (x(t)) whose current state cannot be observed directly. Instead, at times t1 < t2 < . . ., the observations y(ti ) are such that, given the process (x(t)), the random variables (y(ti )) are independent and the conditional distribution of y(ti ) only depends on x(ti ). When this conditional distribution has a specific form, we prove that the model ((x(ti ), y(ti )), i 1) is a computable filter in the sense that all distributions involved in filtering, prediction and smoothing are exactly computable. These distributions are expressed as finite mixtures of parametric distributions. Thus, the number of statistics to compute at each iteration is finite, but this number may vary along iterations.
Fichier principal
Vignette du fichier
chaleyatgenon07.pdf (235.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00159728 , version 1 (03-07-2007)

Identifiants

Citer

Mireille Chaleyat-Maurel, Valentine Genon-Catalot. Filtering the Wright-Fisher diffusion. 2007. ⟨hal-00159728⟩
164 Consultations
168 Téléchargements

Altmetric

Partager

More