Regulators of canonical extensions are torsion: the smooth divisor case
Résumé
In this paper, we prove a generalization of Reznikov's theorem on the torsion-property of the Chern-Simons classes and in particular the torsion--property of the Deligne Chern classes (in degrees $>1$). We consider the case of a smooth quasi--projective variety with an irreducible smooth divisor at infinity. We define the Chern-Simons classes of Deligne's canonical extension of a flat vector bundle with unipotent monodromy at infinity, which lift the Deligne Chern classes and prove the torsion-property of these classes.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|