Regulators of canonical extensions are torsion: the smooth divisor case - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Regulators of canonical extensions are torsion: the smooth divisor case

Résumé

In this paper, we prove a generalization of Reznikov's theorem which says that the Chern-Simons classes and in particular the Deligne Chern classes (in degrees $>1$) are torsion, of a flat bundle on a smooth complex projective variety. We consider the case of a smooth quasi--projective variety with an irreducible smooth divisor at infinity. We define the Chern-Simons classes of Deligne's canonical extension of a flat vector bundle with unipotent monodromy at infinity, which lift the Deligne Chern classes and prove that these classes are torsion.
Fichier principal
Vignette du fichier
extensionIM.pdf (443.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00159418 , version 1 (03-07-2007)
hal-00159418 , version 2 (03-07-2007)

Identifiants

Citer

Jaya Iyer, Carlos Simpson. Regulators of canonical extensions are torsion: the smooth divisor case. 2007. ⟨hal-00159418v2⟩
211 Consultations
147 Téléchargements

Altmetric

Partager

More