YIELDS: A Yet Improved Limited Discrepancy Search for CSPs - Archive ouverte HAL Access content directly
Conference Papers Year : 2007

YIELDS: A Yet Improved Limited Discrepancy Search for CSPs

Abstract

In this paper, we introduce a Yet ImprovEd Limited Discrepancy Search (YIELDS), a complete algorithm for solving Constraint Satisfaction Problems. As indicated in its name, YIELDS is an improved version of Limited Discrepancy Search (LDS). It integrates constraint propagation and variable order learning. The learning scheme, which is the main contribution of this paper, takes benefit from failures encountered during search in order to enhance the efficiency of variable ordering heuristic. As a result, we obtain a search which needs less discrepancies than LDS to find a solution or to state a problem is intractable. This method is then less redundant than LDS. The efficiency of YIELDS is experimentally validated, comparing it with several solving algorithms: Depth-bounded Discrepancy Search, Forward Checking, and Maintaining Arc-Consistency. Experiments carried out on randomly generated binary CSPs and real problems clearly indicate that YIELDS often outperforms the algorithms with which it is compared, especially for tractable problems.
Fichier principal
Vignette du fichier
Karoui-cpaior07-2.pdf (210.02 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-00140032 , version 1 (04-04-2007)

Identifiers

  • HAL Id : hal-00140032 , version 1

Cite

Wafa Karoui, Marie-José Huguet, Pierre Lopez, Wady Naanaa. YIELDS: A Yet Improved Limited Discrepancy Search for CSPs. 4th International Conference, CPAIOR 2007, May 2007, Brussels, Belgium. pp.99-111. ⟨hal-00140032⟩
125 View
360 Download

Share

Gmail Mastodon Facebook X LinkedIn More