
YIELDS: A Yet Improved Limited Discrepancy
Search for CSPs !

Wafa Karoui1,2, Marie-José Huguet1, Pierre Lopez1, and Wady Naanaa3

1Univ. de Toulouse, LAAS-CNRS, 7 avenue du colonel Roche, 31077 Toulouse, France
2Unité ROI, Ecole Polytechnique de Tunisie, La Marsa, Tunisie

3Faculté des Sciences de Monastir, Boulevard de l’environnement, Tunisie
{wakaroui,huguet,lopez}@laas.fr, naanaa.wady@planet.tn

Abstract. In this paper, we introduce a Yet ImprovEd Limited Dis-
crepancy Search (YIELDS), a complete algorithm for solving Constraint
Satisfaction Problems. As indicated in its name, YIELDS is an improved
version of Limited Discrepancy Search (LDS). It integrates constraint
propagation and variable order learning. The learning scheme, which is
the main contribution of this paper, takes benefit from failures encoun-
tered during search in order to enhance the efficiency of variable ordering
heuristic. As a result, we obtain a search which needs less discrepancies
than LDS to find a solution or to state a problem is intractable. This
method is then less redundant than LDS.
The efficiency of YIELDS is experimentally validated, comparing it with
several solving algorithms: Depth-bounded Discrepancy Search, Forward
Checking, and Maintaining Arc-Consistency. Experiments carried out on
randomly generated binary CSPs and real problems clearly indicate that
YIELDS often outperforms the algorithms with which it is compared,
especially for tractable problems.

1 Introduction and motivations

Constraint Satisfaction Problems (CSPs) provide a general framework for mod-
eling and solving numerous combinatorial problems. Basically, a CSP consists
of a set of variables, each of which can take a value chosen among a set of po-
tential values called its domain. The constraints express restrictions on which
combinations of values are allowed. The problem is to find an assignment of val-
ues to variables, from their respective domains, such that all the constraints are
satisfied [4][19].

CSPs are known to be NP-complete problems. Nevertheless, since CSPs crop
up in various domains, many search algorithms for solving them have been de-
veloped. In this paper, we are interested in complete methods which have the
advantage of finding at least a solution to a problem if such a solution exists. A
widely studied class of complete algorithms relies to depth first search (DFS).
! To be published in the proceedings of The Fourth International Conference on In-

tegration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CP-AI-OR’07), Brussels, Belgium.



2 Wafa Karoui et al.

Forward Checking (FC) [9] and Maintaining Arc-Consistency (MAC) [17] are
two sophisticated algorithms belonging to the DFS class. Each of them enforces
during search a kind of local consistency to prune the search tree and therefore
to fasten problem solving. Another algorithm belonging to the DFS class is
Limited Discrepancy Search (LDS) [10]. Since value ordering heuristics cannot
avoid bad instantiations (i.e., choosing, for a given variable, a value that does not
participate in any solution), LDS tackles this problem by gradually increasing
the number of less-preferred options from the heuristic view-point (discrepancies)
[13][15][20].

Lots of recent research works try to improve this type of methods. One im-
portant area is concerned with learning from failures [2][8]. In this context and
in order to design a more efficient search method we proposed a subtantial im-
provement of LDS. We have then defined YIELDS (Yet Improved Limited Dis-
crepancy Search) [12]. YIELDS integrates constraint propagation as well as a
variable order learning scheme in order to reduce the size of the search tree. The
goal is to minimize the number of discrepancies needed to obtain a solution or
to state a problem is intractable. More precisely, this paper is dedicated to the
refinement of the learning mechanism of YIELDS and its evaluation on various
types of instances including randomly generated data and real problems.

The paper is organized as follows. The next section specifies the main con-
cepts and reviews the existing methods to solve constraint satisfaction problems,
especially those following Depth-First Search. Section 3 is the core of the paper:
it describes how to better explore the search space using Yet Improved Dis-
crepancy Search. Experimental experience is reported in Section 4. Section 5
describes related works and Section 6 concludes the paper.

2 Background

Constraint Satisfaction Problem. A CSP is defined by a tuple (X,D,C) where:
X = {X1, . . . , Xn} is a finite set of variables; D = {D1, . . . , Dn} is the set of
domains for each variable, each Di being the set of discrete values for variable
Xi; C = {C1, . . . , Cm} is a set of constraints.

An instantiation of a subset of variables corresponds to an assignment of these
variables by a value from their domain. An instantiation is said to be complete
when it concerns all the variables from X. Otherwise, it is called a partial in-
stantiation. A solution is a complete instantiation satisfying the constraints. An
inconsistency in the problem is raised as soon as a partial instantiation cannot
be extended to a complete one.

Tree Search Methods. Methods based on Depth-First Search are generally used to
quickly obtain a solution of a CSP. One has to successively instantiate variables
which leads to the development of a search tree in which the root corresponds
to uninstantiated variables and leaves to solutions. DFS methods are based on
several key-concepts:



YIELDS for CSPs 3

– At each node of the tree, one has to determine how to choose a variable to be
instantiated and how to choose its value; this can be processed by variable
and value ordering heuristics, respectively.

– After each instantiation, one has to define what level of constraint propaga-
tion can be used to prune the tree.

– Moreover, when a dead-end occurs (i.e., an inconsistency) one has to specify
how to backtrack in the tree to develop another branch or to restart in order
to continue the search.

This type of methods is usually stopped either as soon as a solution is obtained
or when the complete tree has been explored without finding any solution. In
the worst case, it needs an exponential time in the number of variables.

Chronological Backtracking (CB) is a well-known method based on DFS for
solving CSPs. CB extends a partial instantiation by assigning to a new variable
a value which is consistent with the previous instantiated variables (look-back
scheme). When an inconsistency appears it goes back to the latest instantiated
variable trying another value.

Limited Discrepancy Search (LDS) is based on DFS for variable instantiation
and on the concept of discrepancy to expand the search tree. A discrepancy is
realized when the search assigns to a variable a value which is not ranked as the
best by the value ordering heuristic. The LDS method is based on the idea of
gradually increasing the number of allowed discrepancies while restarting:

– It begins by exploring the path obtained by following the values advocated
by the value ordering heuristic: this path corresponds to zero discrepancy.

– If this path does not lead to a solution, the search explores the paths that
involve a single discrepancy.

– The method iterates increasing the number of allowed discrepancies.

For binary trees, counting discrepancies is a quite simple task: exploring the
branch associated with the best boolean value, according to a value ordering
heuristic, involves no discrepancy, while exploring the remaining branch implies
a single discrepancy. For non binary trees, the values are ranked according to a
value ordering heuristic such that the best value has rank 1; exploring the branch
associated to value of rank k ≥ 1 leads to make k − 1 discrepancies.

LDS can be stopped either as soon as a first solution is found or when the
complete tree is expanded using the maximum number of allowed discrepancies.
Note that an improvement of LDS is Depth-bounded Discrepancy Search (DDS)
which first favours discrepancies at the top of the search tree (i.e., on the most
important variables).

Ordering heuristics. They aim to reduce the search space to find a solution.
Depending on their type they provide an order for the selection of the next
variable to consider or the next value for a variable instantiation. These heuristics
can be static (i.e., the orders are defined at the beginning of the search) or
dynamic (i.e., the orders may change during search). The efficiency of DFS
methods such as CB or LDS clearly depends on the chosen ordering heuristic.



4 Wafa Karoui et al.

For CSPs, several common variable and value ordering heuristics are defined such
as dom (i.e., min-domain) or dom/deg for variable ordering, and min-conflict for
value ordering (see [2] and [8]).

Propagations. To limit the search space and then to speed up the search process,
constraint propagation mechanisms can be joined to each variable instantiation.
The goal of these propagations is to filter the domain of some not yet instantiated
variables. Various levels of constraint propagation can be considered in a tree
search method. The most common are:

– Forward Checking (FC) which suppresses inconsistent values in the domain of
not yet instantiated variables linked to the instantiated one by a constraint.

– Arc-Consistency (AC) which corresponds to suppress inconsistent values in
the domain of all uninstantiated variables.

These constraint propagation mechanisms can be added both in Chronological
Backtracking and in Discrepancy Search. In the rest of the paper, CB-FC refers
to the CB method including FC propagation while CB-AC includes AC propa-
gations (CB-AC corresponds to MAC algorithm [17]).

3 The proposed approach

3.1 Overcoming the limits of LDS

The objective of our approach is to minimize the number of discrepancies needed
to reach a solution or to declare that the problem is intractable. To do that, we
propose to use the dead ends encountered during a step of the LDS method
to order the problem variables for the following steps. In fact in LDS, only the
heuristic on the order of variables selects the path in the search space (see Algo-
rithms 1 and 2). This means that when we increment the number of discrepancies
and reiterate LDS, we have frequently the same initial variable to instantiate. If
we assume that this variable is the failure reason and that it eliminates values
required for the solution, it is useless to develop again its branch.

Algorithm 1 LDS(X, D, C, k-max, Sol)
1: k ← 0
2: Sol ← NIL
3: while (Sol = NIL) and (k ≤ k max) do
4: Sol ← LDS iteration(X, D, C, k, Sol)
5: k ← k+1
6: end while
7: return Sol

To avoid this kind of situations, we associate a weight, initially equal to zero,
to each variable. This weight is incremented every time this variable fails because



YIELDS for CSPs 5

Algorithm 2 LDS iteration(X, D, C, k, Sol)
1: if X = ∅ then
2: return Sol
3: else
4: xi ← BestVariable(X) // variable instantiation heuristic
5: vi ← BestValue(Di, k) // value instantiation heuristic
6: if vi $= NIL then
7: D’ ← Update(X\{xi}, D, C, (xi, vi)) // constraint propagation
8: I ← LDS iteration(X\{xi}, D’, C, k, Sol

⋃
{(xi, vi)})

9: if I $= NIL then
10: return I
11: else
12: if k > 0 then
13: Di ← Di\{vi}
14: return LDS iteration(X, D, C, k-1, Sol) // can diverge
15: end if
16: end if
17: end if
18: return NIL
19: end if

of the limit on the number of allowed discrepancies: we cannot diverge on this
variable despite its domain of values is not empty. In the following iterations, this
variable will be privileged and will be placed higher in the branch developed by
the LDS method. Like this, we will avoid the situation of inconsistency caused
by this variable. Therefore, the choice of variable to be instantiated is based,
first, on the usual heuristic (dom for example), second, on the variable weight,
finally, if tied variables still remain, the order of indexation can be considered.

Thus, by introducing the notion of weight, our purpose is to correct the
heuristic for variable instantiation guiding it to variables concretely constrained.
These variables greatly influence the solution search. Therefore, we correct mis-
takes of the heuristic by adding the weight notion which can be considered as
a type of dynamic learning. Like this, we can exploit previous failures and take
useful information for the following steps. To speed up the process, difficult and
intractable subproblems are pushed up at the top of the search tree.

This improvement of LDS method besides its effects on the variable ordering,
stops the LDS iterations when an inconsistency is found. In fact, if an incon-
sistency arises with k allowed discrepancies, other iterations, from k+1 to the
maximum number of discrepancies, are unnecessary since they will discover again
the same inconsistency.

For LDS, when we authorize a fixed number of discrepancies we can consume,
completely or not, these authorized discrepancies. If the totality of discrepan-
cies is consumed and no solution is found, a new iteration of LDS is launched
incrementing the number of allowed discrepancies. In contrast, if the allowed
discrepancies are not consumed, it is not necessary to continue to reiterate LDS
with a greater number of discrepancies even if no solution has been found. In
such situation, one can be sure that the problem is intractable (all the feasible



6 Wafa Karoui et al.

values of each variable have been tried without using the number of allowed
discrepancies).

3.2 The YIELDS algorithm

The YIELDS method is based on a learning from failures technique. This learning
produces a new way to go all over the search space contributing to speed up the
resolution. Moreover, the propagation mechanisms lead us to stop the search
before we reach the maximum number of discrepancies in the case of intractable
problems, without missing solution if it does exist.

The completeness of YIELDS can be proved: if the problem has a solution,
YIELDS does find it. In fact, when the problem is tractable, the learning tech-
nique has produced a permutation on the order of variables. The iteration of
YIELDS which has discovered the solution, called YIELDS(k), is based on a
variable ordering O, learnt during the previous iterations. We can say that
YIELDS(k) is equivalent to CB-FC directly associated with the variable ordering
O.

When the problem is intractable, YIELDS stops the search with anticipation.
The last iteration does not consume all allowed discrepancies: it can be compared
to a call to CB-FC because the bound on discrepancies was not at the origin of
the break. Like this, the method is complete (see Algorithms 3 and 4).

Algorithm 3 YIELDS(X, D, C, k max, Sol)
1: k ← 0
2: Sol ← NIL
3: Exceed ← False
4: while (Sol = NIL) and (k ≤ k max) do
5: Sol ← YIELDS iteration(X, D, C, k, Sol)
6: k ← k+1
7: if !Exceed then
8: exit
9: end if

10: end while
11: return Sol

The principle of YIELDS is exactly the same as LDS: it considers, initially,
branches of the tree which cumulate the smallest number of discrepancies. The
first difference is that a weight (initially the same for all variables) is associated to
each variable and every time a variable fails because of the limit on discrepancies,
its weight is incremented to guide next choices of the heuristic. The second
difference is that the number of discrepancies is not blindly incremented until
the maximum of discrepancies allowed by the search tree is reached (as it is done
in LDS). Thus, the new method consumes less discrepancies than LDS or even
DDS.



YIELDS for CSPs 7

Algorithm 4 YIELDS iteration(X, D, C, k, Sol)
1: if X = ∅ then
2: return Sol
3: else
4: xi ← First VariableOrdering(X,Weight)
5: vi ← First ValueOrdering(Di, k)
6: if vi $= NIL then
7: D’ ← Update(X\{xi}, D, C, (xi, vi))
8: I ← YIELDS iteration(X\{xi}, D’, C, k, Sol

⋃
{(xi, vi)})

9: if I $= NIL then
10: return I
11: else
12: if k > 0 then
13: Di ← Di \{vi}
14: return YIELDS iteration(X, D, C, k-1, Sol)
15: else
16: Weight[xi] ← Weight[xi]+1
17: Exceed ← True // impossible to diverge
18: end if
19: end if
20: end if
21: return NIL
22: end if

Definition 1. Let P = (X,D,C) be a binary CSP of n variables and wi a weight
associated to each variable xi. The weight vector W of P is the vector composed
of weights of all variables of the problem:

W (P ) = [w0, w1, ..., wn−1]

Definition 2. Let W1 and W2 be two weight vectors of P , a binary CSP. The
variation of weights of P is given by ∆W the vector difference between W1 and
W2:

∆W (P ) = W2(P ) − W1(P )

Proposition 1. Let assume that variable weights are initially equal and that
they are incremented every time that we do not found a variable value which
respects the limit on the number of authorized discrepancies. Let consider two
successive iterations of YIELDS for the resolution of P a binary CSP. If the
variation of weights ∆W (P ) between these iterations is equal to the null vector,
then we can be sure that:

1. The process of learning comes to end.
2. P is an intractable problem.

Proof: Since ∆W (P ) = 0 the last iteration was not interrupted because of the
limit on the number of authorized discrepancies (see Algorithm 2). In addition,
it is obvious that an iteration of YIELDS without the limit on the number of
discrepancies corresponds to CB-FC which is a complete method. Therefore, if
the last iteration corresponds to a complete method and that no solution has
been found yet, the problem is intractable. !



8 Wafa Karoui et al.

3.3 Illustrative examples

As an example for an intractable problem, let consider a CSP composed of
three variables x0, x1, x2 and four values 0, 1, 2, 3 presented by its incompatibility
diagram (see Figure 1).

0 1 2 3 0 1 2 3

0 1 2 3

x0 x1

x2

Fig. 1. Incompatibility diagram

The variable ordering initially follows the ascending order, then it is based
first on min-domain order (dom), then on min-domain plus weights order (see
Table 1), while min-conflict heuristic is applied for value ordering. In this exam-
ple, the weights do not influence the variables order which is always the same
(ascending order). Reminding the way retained for counting discrepancies (see
Section 2), the maximum number of discrepancies is here equal to 9.

0

0

0

0 1

1

3 0 1 3

0 1 2 0 1 3

0 1 3 0 1 3

0 1 2
32

YIELDS(4)YIELDS(3)YIELDS(2)YIELDS(1)YIELDS(0)

x0

x1

x2

Fig. 2. Illustration of YIELDS on an intractable problem

Weight Initial YIELDS(0) YIELDS(1) YIELDS(2) YIELDS(3) YIELDS(4)
W [x0] 0 1 2 3 4 4
W [x1] 0 1 3 3 3 3
W [x2] 0 0 0 0 0 0

Table 1. Variable weights for the intractable problem



YIELDS for CSPs 9

From iterations YIELDS(0) till YIELDS(4), YIELDS develops the same
search trees as LDS (see Figure 2). In YIELDS(4), we can see that even if
we authorize 4 discrepancies, only 3 are used. The iterations of the YIELDS
method are interrupted but not because of the limit on discrepancies. In such a
context, YIELDS stops the search. LDS would continue iterations until LDS(9)
and would repeat exactly the same search tree.

As an example for a tractable problem, let consider the CSP (X,D,C) defined
by X = {x0, x1, x2}, D = {D0,D1,D2} where D0 = D1 = D2 = {0, 1, 2, 3, 4}.
The set of contraints C is represented by the following set of incompatible tu-
ples: {(x0, 0), (x1, 4)} ∪ {(x0, 0), (x2, 4)} ∪ {(x0, 1), (x1, 4)} ∪ {(x0, 1), (x2, 4)}
∪ {(x0, 2), (x1, 4)} ∪ {(x0, 2), (x2, 4)} ∪ {(x0, 3), (x1, 4)} ∪ {(x0, 3), (x2, 4)} ∪
{(x0, 4), (x2, 2)} ∪ {(x0, 4), (x2, 3)} ∪ {(x1, 0), (x2, 0)} ∪ {(x1, 0), (x2, 1)} ∪ {(x1, 0), (x2, 2)}
∪ {(x1, 0), (x2, 3)} ∪ {(x1, 1), (x2, 0)} ∪ {(x1, 1), (x2, 1)} ∪ {(x1, 1), (x2, 2)} ∪
{(x1, 1), (x2, 3)} ∪ {(x1, 2), (x2, 0)} ∪ {(x1, 2), (x2, 1)} ∪ {(x1, 2), (x2, 2)} ∪ {(x1, 2), (x2, 3)}
∪ {(x1, 3), (x2, 0)} ∪ {(x1, 3), (x2, 1)} ∪ {(x1, 3), (x2, 2)} ∪ {(x1, 3), (x2, 3)}.

In this example, we use the same ordering heuristics as previously. Applying
CB-FC to solve this CSP, the resulting search tree consists of 24 expanded nodes
(EN) (see Figure 3). Applying LDS, we obtain a bigger search tree of 95 EN. If
we apply YIELDS, we obtain a search tree of only 13 EN (see Figure 4) due to
the increasing of x1 priority which contributes to speed up the search.

0

0 2 4

1

5

0 2 0 2 0 2 0 2

1 3

1 1 1 13 3 3 3

1

x1

x2

17

x0

x1

x2
4

24 EN

Fig. 3. CB-FC search tree

Weight Initial YIELDS(0) YIELDS(1) YIELDS(2)
W [x0] 0 1 2 2
W [x1] 0 1 3 3
W [x2] 0 0 0 0

Table 2. Variable weights for the tractable problem



10 Wafa Karoui et al.

YIELDS(0) YIELDS(1) YIELDS(2)

1

3

4

5

x0

0

x1

0

x2

x0

0

x1

0

x2

1

1

0

x1

0

4

x2

4

13 EN

x0

Fig. 4. YIELDS search tree

4 Experimental results

The problems investigated in our experiments are random binary CSPs, latin
squares, and job-shop problems. We compared YIELDS with standard versions
of DDS, CB-FC, and CB-AC. The arc-consistency algorithm underlying CB-AC
is AC-3.1 [1][21]. The variable ordering heuristic used by all algorithms is dom.
For value ordering, we used the min-conflict heuristic. The evaluation criteria are
the number of expanded nodes (NED) and CPU time in seconds. Reported re-
sults are expressed as average values. All algorithms were implemented in C++.
They were run under Windows XP Professional on a 1.6 GHz PC having 1 Go
of RAM.

Random Binary CSPs:
For random binary CSPs, we used the generator developed by Frost et al.

which is available in [3]. Problems are generated according to model B. We
experimented on problems involving n = 30 variables, a uniform domain size of
d = 25. The problem density p1 (i.e., the ratio of the number of constraints in
the constraint graph over that of all possible constraints) varied from 0.1 (sparse
problems: from line 1 to line 3 in Table 3) to 0.3 (dense problems: from line 4
to the end in Table 3). The constraint tightness p2 (i.e., the ratio of the number
of disallowed tuples over that of all possible tuples) varied so that we obtain
instances around the peak of complexity. The size of samples is 100 problem
instances for each data point.

For all considered problems, the results clearly indicated that YIELDS out-
performs DDS on sparse and dense problems (in Table 3, “$” means that exe-
cution times are of several hours).

For sparse problems, YIELDS is faster than CB-AC and CB-FC, albeit CB-
AC develops less nodes.

For dense problems, YIELDS is also faster than CB-AC and CB-FC. How-
ever the advantage is less significant as we move toward dense problems. If we
isolate tractable problems (last three lines in Table 3), results become partic-
ularly interesting and YIELDS clearly outperforms other considered methods.



YIELDS for CSPs 11

instances DDS YIELDS CB-FC CB-AC
<n,d,C,T> NED CPU NED CPU NED CPU NED CPU
<30,25,44,531>(35% sat) 10210510 90.61 6273 0.04 1427970 10.2 71 0.08
<30,25,44,526>(48% sat) 21876033 207.8 8526 0.06 1732513 11.92 250 0.19
<30,25,44,518>(73% sat) 1447242 11.72 3543 0.02 178168 1.26 270 0.21
<30,25,131,322>(39% sat) % % 1342742 12 1898943 16.45 203862 152.66
<30,25,131,320>(56% sat) % % 1360525 11.76 1374413 11.92 94277 79.92
<30,25,131,318>(74% sat) % % 1503581 12.39 1577180 13.24 54870 39.9
<30,25,131,322>(sat) % % 326739 3.07 1101429 9.37 46583 35
<30,25,131,320>(sat) % % 337996 3.05 827566 6.98 55165 58.46
<30,25,131,318>(sat) % % 341994 3.12 843548 7.06 16876 11.87

Table 3. Random binary CSPs instances

For intractable problems, CB-FC remains the better method.

Latin Squares and Job-Shop Scheduling problems:
For the job-shop problems, we investigated the Sadeh instances [18]. For

tested instances, YIELDS is clearly better than CB-FC and CB-AC (see Table 4).

instances CB-FC YIELDS CB-AC
NND CPU NND CPU NND CPU

enddr1-10-5-1 802233 362 68997 <1 53186 897
enddr1-10-5-10 176015 94 57 <1 113486 457
ewddr2-10-5-1 156388 58 910 <1 92729 480
ewddr2-10-5-10 104032 41 55 <1 64535 372
e0ddr1-10-5-1 1262247624 13030 17133261 113 6262916 1752

Table 4. Job-Shop instances

We also studied experiments on Latin Squares obtained by the generator
of [7]. Selected problems have an order of 10. Results showed that YIELDS is
always faster than all considered methods (see Table 5).

5 Related works

Many research works try to improve known methods integrating learning from
failures. In this context, the following methods were proposed:

1. Squeaky Wheel Optimization (SWO) [11] which is a general optimization
approach for local search. In SWO, a greedy constructor produces an initial
solution in which difficult elements are identified and guides the construction



12 Wafa Karoui et al.

instances CB-FC YIELDS CB-AC
NND CPU NND CPU NND CPU

qg.1030 7940160 74 158808 16 68276 72.5
qg.1032 26070985 239 128424 71 80215 105
qg.1034 400490 3.91 1775 0.02 181934 212
qg.1036 18976 0.19 364 0.01 13609 17.6
qg.1038 22795 0.21 114 0.01 14393 18

Table 5. Latin Squares instances

of a new solution (the process is iterated until some stopping criterion is met).
This strategy has not completeness guarantee.

2. Impact-Based Search (IBS) [16] which is also a general search method based
on a probing-like integer programming technique. In IBS, the reduction of
the search space following a variable instantiation is used to prioritize the
variables to consider. This method differs from ours by the used information
for learning and by the nature of restarts.

3. F-O-Opt (failure-driven algorithm for Open Hidden-variable Weighted Con-
straint Optimization Problems) which is one of the algorithm proposed in [5]
for open constraint optimization. The context for this search method is dy-
namic and constraints are updated while searching so used learning technics
are local and different.

4. Last Conflict reasoning (LC) [2] which is a learning search method. This
method was improved by Grimes and Wallace in [8] including restarts to the
original method. Unlike our method, this method learns from constraints
and, in Grimes improvement, added restarts are not relied to problem prop-
erties. In our method, learning is based on variables and restarts are based
on dicrepancies. Gathered information on discrepancies variation may rep-
resent an additional information on the considered problem and contribute
to accelerate the search.

6 Conclusion and further work

In this paper we present a novel method, Yet Improved Discrepancy Search
(YIELDS), which takes advantages from failures to guide the search. The goal
of this method is to correct the variable ordering heuristic exploiting some fails
and detects whether a problem is intractable without doing all the iterations of
LDS. We propose an effective YIELDS algorithm and describe how to integrate
it into a classical LDS algorithm.

An experimental study carried out on numerous random and real CSPs have
shown how it is possible to obtain good results.

In the near future, we plan to set up an association of two learning ways,
weights and no-goods which, in our opinion, will constitute a helpful tool for the
proposed method. In addition, we think that a careful computational study on



YIELDS for CSPs 13

other known benchmarks will present an interesting issue to better illustrate the
usefulness of YIELDS. Comparisons with some related works are also planned.

References

1. C. Bessière and J.-C. Régin. Refining the basic constraint propagation algorithm.
In Proceedings IJCAI-01, pages 309–315, Seattle, USA, 2001

2. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In Proceedings ECAI’04, pages 146–150, Valencia, Spain,
2004

3. D. Frost, C. Bessière, R. Dechter, and J.-C. Régin, Random uniform CSP genera-
tors, http://www.lirmm.fr/~bessiere/generator.html

4. R. Dechter. Constraint processing, Morgan Kaufmann, San Francisco, 2003
5. B. Faltings and S. Macho-Gonzalez, Open constraint satisfaction. In Van Henten-

ryck, P., ed., Proceedings of CP’2002, LNCS No. 2470, Springer, pages 356–370,
2002

6. I.P. Gent and P. Prosser. Inside MAC and FC. APES Research Group Report
APES-20-2000, 2000

7. C.P. Gomes. Generator of Quasigroup Completion Problem and related problems,
http://www.cs.cornell.edu/gomes/new-demos.htm

8. D. Grimes and R. J. Wallace. Learning from failures in constraint satisfaction
search. AAAI Workshop on Learning for Search, Boston, Massachusetts, USA,
2006

9. R. Haralick and G. Elliot, Increasing tree search efficiency for constraint satisfaction
problems, Artificial Intelligence, 14:263–313, 1980

10. W.D. Harvey and M.L. Ginsberg. Limited discrepancy search. In Proceedings
IJCAI-95, pages 607–613, Montréal, Canada, 1995

11. D. Joslin and D. Clements. Squeaky Wheel Optimisation. In Proceedings Sixteenth
National Conference on Artificial Intelligence-AAAI’98, pages 340–346, 1998.

12. W. Karoui, M.J. Huguet, P. Lopez et W. Naanaa. Amélioration par apprentissage
de la recherche à divergences limitées. In Proceedings JFPC’05, pages 109–118,
Lens, France, 2005

13. R.E. Korf. Improved limited discrepancy search. In Proceedings AAAI-96/IAAI-96,
Vol. 1, pages 286–291, Portland, Oregon, USA, 1996

14. C. Likitvivatanavong, Y. Zhang, J. Bowen, and E.C. Freuder. Arc-consistency in
MAC: A new perspective. In Proceedings First International Workshop on Con-
straint Propagation and Implementation, Toronto, Canada, 2004

15. N. Prcovic. Quelques variantes de LDS. In Proceedings JNPC’02, pages 195–208,
Nice, France, 2002

16. P. Refalo. Impact-based search strategies for constraint programming. In Wallace,
M., ed., Principles and Practice of Constraints Programming-CP’04, LNCS No.
3258, Springer, pages 557–571, 2004

17. D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satis-
faction. In Proceedings PPCP-94, Seattle, USA, 1994

18. N. Sadeh and M.S. Fox. Variable and value ordering heuristics for the job shop
scheduling constraint satisfaction problem. Artificial Intelligence, 86:1–41, 1996

19. E. Tsang. Foundations of Constraint Satisfaction. Academic Press Ltd, London,
1993



14 Wafa Karoui et al.

20. T. Walsh. Depth-bounded discrepancy search. In Proceedings IJCAI-97, pages
1388–1395, Nagoya, Japan, 1997

21. Y. Zhang and R.H.C. Yap. Making AC-3 an optimal algorithm. In Proceedings
IJCAI-01, pages 316–321, Seattle, USA, 2001


