Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains
Résumé
A class of three-dimensional initial data characterized by uniformly large vorticity is considered for the Euler equations of incompressible fluids. The fast singular oscillating limits of the Euler equations are studied for parametrically resonant cylinders. Resonances of fast swirling Beltrami waves deplete the Euler nonlinearity. The resonant Euler equations are systems of three-dimensional rigid body equations, coupled or not. Some cases of these resonant systems have homoclinic cycles, and orbits in the vicinity of these homoclinic cycles lead to bursts of the Euler solution measured in Sobolev norms of order higher than that corresponding to the enstrophy.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...