Polyvector Super-Poincare Algebras - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Physics Année : 2005

Polyvector Super-Poincare Algebras

Dmitri V. Alekseevsky
  • Fonction : Auteur
Chandrashekar Devchand
  • Fonction : Auteur
Antoine van Proeyen
  • Fonction : Auteur

Résumé

A class of $\Bbb Z_2$-graded Lie algebra and Lie superalgebra extensions of the pseudo-orthogonal algebra of a spacetime of arbitrary dimension and signature is investigated. They have the form g = g_0 + g_1, with g_0 = so(V) + W_0 and g_1 = W_1, where the algebra of generalized translations W = W_0 + W_1 is the maximal solvable ideal of g, W_0 is generated by W_1 and commutes with W. Choosing W_1 to be a spinorial so(V)-module (a sum of an arbitrary number of spinors and semispinors), we prove that W_0 consists of polyvectors, i.e. all the irreducible so(V)-submodules of W_0 are submodules of \Lambda V. We provide a classification of such Lie (super)algebras for all dimensions and signatures. The problem reduces to the classification of so(V)-invariant \Lambda^k V-valued bilinear forms on the spinor module S.

Dates et versions

hal-00139071 , version 1 (29-03-2007)

Identifiants

Citer

Dmitri V. Alekseevsky, Vicente Cortés, Chandrashekar Devchand, Antoine van Proeyen. Polyvector Super-Poincare Algebras. Communications in Mathematical Physics, 2005, 253 (2), pp.385-422. ⟨hal-00139071⟩
74 Consultations
0 Téléchargements

Altmetric

Partager

More