Forgetting of the initial distribution for Hidden Markov Models - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2009

Forgetting of the initial distribution for Hidden Markov Models

Résumé

The forgetting of the initial distribution for discrete Hidden Markov Models (HMM) is addressed: a new set of conditions is proposed, to establish the forgetting property of the filter, at a polynomial and geometric rate. Both a pathwise-type convergence of the total variation distance of the filter started from two different initial distributions, and a convergence in expectation are considered. The results are illustrated using different HMM of interest: the dynamic tobit model, the non-linear state space model and the stochastic volatility model.
Fichier principal
Vignette du fichier
DoucFortMoulinesPriouret.pdf (297.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00138902 , version 1 (28-03-2007)

Identifiants

Citer

Randal Douc, Gersende Fort, Éric Moulines, Pierre Priouret. Forgetting of the initial distribution for Hidden Markov Models. Stochastic Processes and their Applications, 2009, 119 (4), pp.1235--1256. ⟨hal-00138902⟩
315 Consultations
122 Téléchargements

Altmetric

Partager

More