Stable norms of non-orientable surfaces
Résumé
We study the stable norm on the first homology of a closed, non-orientable surface equipped with a Riemannian metric. We prove that in every conformal class there exists a metric whose stable norm is polyhedral. Furthermore the stable norm is never strictly convex if the first Betti number of the surface is greater than two.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...