Rate of Converrgence for ergodic continuous Markov processes : Lyapunov versus Poincare. - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Rate of Converrgence for ergodic continuous Markov processes : Lyapunov versus Poincare.

Résumé

We study the relationship between two classical approaches for quantitative ergodic properties : the first one based on Lyapunov type controls and popularized by Meyn and Tweedie, the second one based on functional inequalities (of Poincaré type). We show that they can be linked through new inequalities (Lyapunov-Poincaré inequalities). Explicit examples for diffusion processes are studied, improving some results in the literature. The example of the kinetic Fokker-Planck equation recently studied by Hérau-Nier, Helffer-Nier and Villani is in particular discussed in the final section.
Fichier principal
Vignette du fichier
bcg050307.pdf (375.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00136208 , version 1 (12-03-2007)

Identifiants

Citer

Dominique Bakry, Patrick Cattiaux, Arnaud Guillin. Rate of Converrgence for ergodic continuous Markov processes : Lyapunov versus Poincare.. 2007. ⟨hal-00136208⟩
290 Consultations
136 Téléchargements

Altmetric

Partager

More