The Gervais-Neveu-Felder equation for the Jordanian quasi-Hopf U_{h;y}(sl(2)) algebra - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2000

The Gervais-Neveu-Felder equation for the Jordanian quasi-Hopf U_{h;y}(sl(2)) algebra

R. Chakrabarti
  • Fonction : Auteur

Résumé

Using a contraction procedure, we construct a twist operator that satisfies a shifted cocycle condition, and leads to the Jordanian quasi-Hopf U_{h;y}(sl(2)) algebra. The corresponding universal ${\cal R}_{h}(y)$ matrix obeys a Gervais-Neveu-Felder equation associated with the U_{h;y}(sl(2)) algebra. For a class of representations, the dynamical Yang-Baxter equation may be expressed as a compatibility condition for the algebra of the Lax operators.

Dates et versions

hal-00135741 , version 1 (08-03-2007)

Identifiants

Citer

A. Chakrabarti, R. Chakrabarti. The Gervais-Neveu-Felder equation for the Jordanian quasi-Hopf U_{h;y}(sl(2)) algebra. 2000. ⟨hal-00135741⟩
85 Consultations
0 Téléchargements

Altmetric

Partager

More