Molar heat capacities and volumes of transfer of cytosine, thymine, caffeine and 1,3-diethylthymine to aqueous solutions of glycyl-glycine and L-α-alanyl-L-α-alanine at 25°C
Résumé
Densities and specific heat capacities of ternary aqueous systems containing dipeptides (glycyl-glycine or L--alanyl-L--alanine) and nucleic acid bases (cytosine or thymine) or their alkyl derivatives (1,3-diethylthymine or caffeine) were determined at 25°C by flow calorimetry and flow densimetry. The partial molar volumes and heat capacities of transfer at infinite dilution of the different nucleic acid bases from water to water+dipeptide solutions were obtained therefrom. Except for the case of the transfer of cytosine to aqueous glycyl-glycine solutions where a small positive dependence of the transfer quantities was observed with the dipeptide concentration, the values of the heat capacities of transfer were in general low, positive or negative, depending on the compensation of hydrophobic-hydrophilic interactions between the dipeptide and the base. The volumes of transfer of most of the bases are very small, within the limit of the experimental error.