Heat Capacities of Aqueous Solutions of Acetone; 2,5-Hexanedione; Diethyl Ether; 1,2-Dimethoxyethane; Benzyl Alcohol; and Cyclohexanol at Temperatures to 523 K
Résumé
The heat capacities of aqueous solutions of acetone, 2,5-hexanedione, diethyl ether, 1,2-dimethoxyethane, benzyl alcohol and cyclohexanol at concentrations of 0.1 to 1.0 mol⋅kg−1 were determined at temperatures of 298.15, 423.15, 473.15 and 523.15 K and pressures up to 28 MPa. The measurements were performed at ambient conditions using the commercial Picker differential flow calorimeter and at high temperatures and pressures with a customized Picker type calorimeter constructed at the Blaise Pascal University, Clermont-Ferrand. Standard molar heat capacities were obtained by weighted extrapolation to the infinite dilution limit. The contributions of –CO–, –O– and –OH groups to the standard molar volume and standard molar heat capacity were determined from the newly determined and literature data. The variation of the three oxygen-containing group contributions with temperature and molecular structure is examined qualitatively.