Infinitesimal Einstein Deformations of Nearly Kähler Metrics - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Infinitesimal Einstein Deformations of Nearly Kähler Metrics

Andrei Moroianu
  • Fonction : Auteur
  • PersonId : 828514
Uwe Semmelmann
  • Fonction : Auteur
  • PersonId : 828824

Résumé

It is well-known that every 6-dimensional strictly nearly Kähler manifold $(M,g,J)$ is Einstein with positive scalar curvature $scal>0$. Moreover, one can show that the space $E$ of co-closed primitive (1,1)-forms on $M$ is stable under the Laplace operator $\Delta$. Let $E(a)$ denote the $a$-eigenspace of the restriction of $\Delta$ to $E$. If $M$ is compact, we prove that the moduli space of infinitesimal Einstein deformations of the nearly Kähler metric $g$ is naturally isomorphic to the direct sum $E(scal/15)\oplus E(scal/5)\oplus E(2scal/5)$. It is known that the last summand is itself isomorphic with the moduli space of infinitesimal nearly Kähler deformations.
Fichier principal
Vignette du fichier
enk3.pdf (202.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00131208 , version 1 (15-02-2007)

Identifiants

Citer

Andrei Moroianu, Uwe Semmelmann. Infinitesimal Einstein Deformations of Nearly Kähler Metrics. 2007. ⟨hal-00131208⟩
224 Consultations
75 Téléchargements

Altmetric

Partager

More