The COX18 gene, involved in mitochondrial biogenesis, is functionally conserved and tightly regulated in humans and fission yeast.
Résumé
The biogenesis of cytochrome c oxidase requires coordination between the nucleus and mitochondria because both these compartments provide the structural subunits of this enzyme. In addition, synthesis, membrane insertion and assembly of the mitochondrially encoded subunits are controlled in a concerted way by numerous nuclear-encoded factors, including Oxa1 and Cox18, which play successive roles in Cox2 assembly in Saccharomyces cerevisiae. These two factors share a weak structural similarity and define two sub-branches of the Oxa1/YidC/Alb3 gene family, whose members facilitate the membrane insertion of various hydrophobic proteins into diverse biological membranes. In this study, we have analyzed a second human and a third fission yeast member of the family. We show, by deletion in the fission yeast genome, as well as expression and functional complementation experiments in both yeasts, that these new genes belong to the COX18 rather than to the OXA1 sub-branch. So far, the fission yeast gene cox18Sp+ is the smallest functional member of this gene family. COX18Hs gives rise to various mRNAs with different coding capacities, and we show that cox18Sp+ and COX18Hs are expressed at a low level and appear to be stringently regulated. This transcriptional control contrasts with the constitutive abundance of the OXA1 mRNAs and might reflect major functional differences between these nevertheless structurally related genes.