On the bifractional Brownian motion - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2006

On the bifractional Brownian motion

Résumé

This paper is devoted to analyze several properties of the bifractional Brownian motion introduced by Houdré and Villa. This process is a self-similar Gaussian process depending on two parameters $H$ and $K$ and it constitutes natural generalization of the fractional Brownian motion (which is obtained for $K=1$). We adopt the strategy of the stochastic calculus via regularization. Particular interest has for us the case $HK=\frac{1}{2}$. In this case, the process is a finite quadratic variation process with bracket equal to a constant times $t$ and it has the same order of self-similarity as the standard Brownian motion. It is a short memory process even though it is neither a semimartingale nor a Dirichlet process.
Fichier principal
Vignette du fichier
RuTu-SPA.pdf (227.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00130627 , version 1 (13-02-2007)

Identifiants

Citer

Francesco Russo, Ciprian A. Tudor. On the bifractional Brownian motion. Stochastic Processes and their Applications, 2006, 116 (6), pp.830-856. ⟨10.1016/j.spa.2005.11.013⟩. ⟨hal-00130627⟩
2173 Consultations
462 Téléchargements

Altmetric

Partager

More