Second-Order Elliptic Integro-Differential Equations: Viscosity Solutions' Theory Revisited - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2008

Second-Order Elliptic Integro-Differential Equations: Viscosity Solutions' Theory Revisited

Résumé

The aim of this work is to revisit viscosity solutions' theory for second-order elliptic integro-differential equations and to provide a general framework which takes into account solutions with arbitrary growth at infinity. Our main contribution is a new Jensen-Ishii's Lemma for integro-differential equations, which is stated for solutions with no restriction on their growth at infinity. The proof of this result, which is of course a key ingredient to prove comparison principles, relies on a new definition of viscosity solution for integro-differential equation (equivalent to the two classical ones) which combines the approach with test-functions and sub-superjets.
Fichier principal
Vignette du fichier
IDR.pdf (270.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00130169 , version 1 (09-02-2007)
hal-00130169 , version 2 (15-09-2008)
hal-00130169 , version 3 (30-09-2008)

Identifiants

Citer

Guy Barles, Cyril Imbert. Second-Order Elliptic Integro-Differential Equations: Viscosity Solutions' Theory Revisited. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2008, 25 (3), pp.567-585. ⟨10.1016/j.anihpc.2007.02.007⟩. ⟨hal-00130169v1⟩
187 Consultations
1025 Téléchargements

Altmetric

Partager

More