Second-Order Elliptic Integro-Differential Equations: Viscosity Solutions' Theory Revisited
Résumé
The aim of this work is to revisit viscosity solutions' theory for second-order elliptic integro-differential equations and to provide a general framework which takes into account solutions with arbitrary growth at infinity. Our main contribution is a new Jensen-Ishii's Lemma for integro-differential equations, which is stated for solutions with no restriction on their growth at infinity. The proof of this result, which is of course a key ingredient to prove comparison principles, relies on a new definition of viscosity solution for integro-differential equation (equivalent to the two classical ones) which combines the approach with test-functions and sub-superjets.
Origine | Fichiers produits par l'(les) auteur(s) |
---|