A splitting theorem for Kähler manifolds with constant eigenvalues of the Ricci tensor - Archive ouverte HAL
Article Dans Une Revue International Journal of Mathematics Année : 2001

A splitting theorem for Kähler manifolds with constant eigenvalues of the Ricci tensor

Résumé

It is proved that a compact Kähler manifold whose Ricci tensor has two distinct constant non-negative eigenvalues is locally the product of two Kähler–Einstein manifolds. A stronger result is established for the case of Kähler surfaces. Without the compactness assumption, irreducible Kähler manifolds with Ricci tensor having two distinct constant eigenvalues are shown to exist in various situations: there are homogeneous examples of any complex dimension n ≥ 2 with one eigenvalue negative and the other one positive or zero; there are homogeneous examples of any complex dimension n ≥ 3 with two negative eigenvalues; there are non-homogeneous examples of complex dimension 2 with one of the eigenvalues zero. The problem of existence of Kähler metrics whose Ricci tensor has two distinct constant eigenvalues is related to the celebrated (still open) conjecture of Goldberg. Consequently, the irreducible homogeneous examples with negative eigenvalues give rise to complete Einstein strictly almost Kähler metrics of any even real dimension greater than 4.
Fichier principal
Vignette du fichier
2001ijm.pdf (285.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00126076 , version 1 (23-01-2007)

Identifiants

Citer

Vestislav Apostolov, Tedi Draghici, Andrei Moroianu. A splitting theorem for Kähler manifolds with constant eigenvalues of the Ricci tensor. International Journal of Mathematics, 2001, 12, pp.769-789. ⟨10.1142/S0129167X01001052⟩. ⟨hal-00126076⟩
273 Consultations
266 Téléchargements

Altmetric

Partager

More