Journal Articles Comptes rendus de l'Académie des sciences. Série I, Mathématique Year : 2004

Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length

Andrei Moroianu
  • Function : Author
  • PersonId : 828514
Liviu Ornea
  • Function : Author
  • PersonId : 836076

Abstract

We prove that on a compact n-dimensional spin manifold admitting a non-trivial harmonic 1-form of constant length, every eigenvalue λ of the Dirac operator satisfies some inequality involving the scalar curvature. In the limiting case the universal cover of the manifold is isometric to a cylinder RxN where N is a manifold admitting Killing spinors.
Fichier principal
Vignette du fichier
2004cras.pdf (101.47 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00126029 , version 1 (23-01-2007)
hal-00126029 , version 2 (08-03-2010)

Identifiers

Cite

Andrei Moroianu, Liviu Ornea. Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length. Comptes rendus de l'Académie des sciences. Série I, Mathématique, 2004, 338, pp.561-564. ⟨10.1016/j.crma.2004.01.030⟩. ⟨hal-00126029v2⟩
159 View
311 Download

Altmetric

Share

More