The Dirac spectrum on manifolds with gradient conformal vector fields - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2007

The Dirac spectrum on manifolds with gradient conformal vector fields

Résumé

We show that the Dirac operator on a spin manifold does not admit $L^2$ eigenspinors provided the metric has a certain asymptotic behaviour and is a warped product near infinity. These conditions on the metric are fulfilled in particular if the manifold is complete and carries a non-complete vector field which outside a compact set is gradient conformal and non-vanishing.
Fichier principal
Vignette du fichier
2007jfa.pdf (204.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00125939 , version 1 (23-01-2007)
hal-00125939 , version 2 (07-11-2007)

Identifiants

Citer

Andrei Moroianu, Sergiu Moroianu. The Dirac spectrum on manifolds with gradient conformal vector fields. Journal of Functional Analysis, 2007, 253 (1), pp.207-219. ⟨10.1016/j.jfa.2007.04.013⟩. ⟨hal-00125939v2⟩
183 Consultations
171 Téléchargements

Altmetric

Partager

More