Kahler surfaces of finite volume and Seiberg-Witten equations - Archive ouverte HAL
Article Dans Une Revue Bulletin de la société mathématique de France Année : 2002

Kahler surfaces of finite volume and Seiberg-Witten equations

Résumé

Let M=P(E) be a ruled surface. We introduce metrics of finite volume on M whose singularities are parametrized by a parabolic structure over E. Then, we generalise results of Burns--de Bartolomeis and LeBrun, by showing that the existence of a singular Kahler metric of finite volume and constant non positive scalar curvature on M is equivalent to the parabolic polystability of E; moreover these metrics all come from finite volume quotients of $H^2 \times CP^1$. In order to prove the theorem, we must produce a solution of Seiberg-Witten equations for a singular metric g. We use orbifold compactifications $\overline M$ on which we approximate g by a sequence of smooth metrics; the desired solution for g is obtained as the limit of a sequence of Seiberg-Witten solutions for these smooth metrics.

Dates et versions

hal-00125544 , version 1 (20-01-2007)

Identifiants

Citer

Yann Rollin. Kahler surfaces of finite volume and Seiberg-Witten equations. Bulletin de la société mathématique de France, 2002, 130, pp.409-456. ⟨hal-00125544⟩
74 Consultations
0 Téléchargements

Altmetric

Partager

More