On the use of self-organizing maps to accelerate vector quantization - Archive ouverte HAL
Article Dans Une Revue Neurocomputing Année : 2004

On the use of self-organizing maps to accelerate vector quantization

Résumé

Self-organizing maps (SOM) are widely used for their topology preservation property: neighboring input vectors are quantified (or classified) either on the same location or on neighbor ones on a predefined grid. SOM are also widely used for their more classical vector quantization property. We show in this paper that using SOM instead of the more classical Simple Competitive Learning (SCL) algorithm drastically increases the speed of convergence of the vector quantization process. This fact is demonstrated through extensive simulations on artificial and real examples, with specific SOM (fixed and decreasing neighborhoods) and SCL algorithms.
Fichier principal
Vignette du fichier
paper_revised.pdf (247.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00122759 , version 1 (04-01-2007)

Identifiants

Citer

Eric de Bodt, Marie Cottrell, Patrick Letrémy, Michel Verleysen. On the use of self-organizing maps to accelerate vector quantization. Neurocomputing, 2004, 56, pp.187-203. ⟨10.1016/j.neucom.2003.09.009⟩. ⟨hal-00122759⟩
152 Consultations
166 Téléchargements

Altmetric

Partager

More