AF-equivalence relations and their cocycles
Résumé
After a review of some of the main results about hyperfinite equivalence relations and their cocycles in the measured setting, we give a definition of a topological AF-equivalence relation. We show that every cocycle is cohomologous to a quasi-product cocycle. We then study the problem of determining the quasi-invariant probability measures admitting a given cocycle as their Radon-Nikodym derivative.