Extending Population-Based Incremental Learning to Continuous Search Spaces - Archive ouverte HAL
Communication Dans Un Congrès Année : 1998

Extending Population-Based Incremental Learning to Continuous Search Spaces

Résumé

An alternative to Darwinian-like artificial evolution is offered by Population-Based Incremental Learning (PBIL): this algorithm memorizes the best past individuals and uses this memory as a distribution, to generate the next population from scratch. This paper extends PBIL from boolean to continuous search spaces. A Gaussian model is used for the distribution of the population. The center of this model is constructed as in boolean PBIL. Several ways of defining and adjusting the variance of the model are investigated. The approach is validated on several large-sized problems.
Fichier principal
Vignette du fichier
Sebag1998b.pdf (288.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00116542 , version 1 (20-08-2021)

Licence

Identifiants

Citer

Michèle Sebag, Antoine Ducoulombier. Extending Population-Based Incremental Learning to Continuous Search Spaces. International Conference on Parallel Problem Solving from Nature (PPSN 1998), 1998, Amsterdam, Netherlands. pp.418-427, ⟨10.1007/BFb0056884⟩. ⟨hal-00116542⟩
154 Consultations
188 Téléchargements

Altmetric

Partager

More